Unsur Karbon Bukan Berasal dari Big Bang

Teori terbentuknya alam semesta yang saat ini dipercaya dan telah memiliki banyak bukti pendukung adalah teori ledakan besar (Big Bang). Namun pertanyaan besar masih muncul mengenai misteri terbentuknya kehidupan di Bumi setelah terjadinya Big Bang. Telah diketahui bahwa sebenarnya Big Bang tidak memproduksi karbon secara langsung. Lalu bagaimanakah unsur karbon terbentuk sehingga menghasilkan bentuk kehidupan berbasis karbon di Bumi? Pertanyaan itulah yang menjadi dasar riset tim peneliti dari North Carolina State University. Tim ini menggunakan simulasi superkomputer untuk mendemonstrasikan bagaimana karbon terbentuk di bintang untuk membuktikan sebuah teori lama. Lebih dari 50 tahun yang lalu, seorang astronom bernama Fred Hoyle berhipotesis bahwa isotop karbon-12 (C-12) dapat terbentuk dari tiga atom helium-4 (He-4) atau partikel alfa yang bergabung di dalam inti bintang. Namun, ketiga partikel alfa itu sulit untuk berkombinasi membentuk karbon. Sehingga dari hipotesisnya tersebut, Hoyle beranggapan bahwa terbentuk isotop karbon-12 dengan keadaan energi yang berbeda sehingga memungkinkan terbentuknya karbon di dalam inti bintang. Keadaan baru ini disebut sebagai “keadaan Hoyle”. Eksperimen terakhir menunjukkan bahwa teori tersebut benar namun simulasi pembentukan karbon dari partikel alfa masih belum berhasil. Fisikawan NCSU, Dean Lee bersama koleganya dari Jerman Evgeny Epelbaum, Hermann Krebs, dan Ulf-G. Meissner telah mengembangkan suatu metode baru yang menjelaskan seluruh cara yang mungkin agar proton dan neutron dapat berikatan satu sama lain di dalam inti. Metode ini disebut sebagai “teori medan efektif” yang diformulasi dari kisi bilangan kompleks. Bilangan kompleks merupakan bilangan yang terdiri atas bilangan real dan imajiner. Bentuk umum persamaan bilangan kompleks mengandung unit imajiner (i) yaitu akar kuadrat –1. Persamaan yang menggunakan bilangan kompleks tidak dapat menghasilkan solusi apabila hanya digunakan bilangan real saja atau bilangan imajiner saja. Persamaan matematis yang mengandung bilangan kompleks biasanya digambarkan dalam diagram Argand. Diagram ini memuat sumbu-x sebagai bilangan real dan sumbu-y sebagai bilangan imajiner, serta daerah di antaranya disebut bidang kompleks. Dengan pemodelan yang menggunakan analisis kompleks ini, peneliti dapat mensimulasikan interaksi antar partikel. Ketika peneliti menempatkan 6 proton dan 6 neutron pada kisi kubus dalam simulasi superkomputer tersebut, isotop karbon-12 dalam keadaan Hoyle terbentuk. Melalui hasil tersebut disimpulkan bahwa simulasi ini valid dan terbukti dapat menjelaskan pembentukan karbon. Dengan menggunakan simulasi superkomputer berbasis bilangan kompleks ini, persamaan yang menggambarkan keadaan Hoyle pada pembentukan karbon-12 di dalam inti bintang dapat dicari. Selain itu, simulasi ini juga dapat menjelaskan bagaimana unsur karbon terbentuk dan kehidupan berbasis karbon di Bumi berawal.

Menuai Bahan Bakar Alternatif dari Sampah Kebun

Tidak dapat dipungkiri bahwa hingga saat ini, bahan bakar fosil merupakan bahan bakar yang paling luas dan paling sering digunakan oleh seluruh manusia di dunia ini. Penggunaan jenis bahan bakar ini semakin lama semakin tinggi, seiring dengan meningkatnya aktivitas dan jumlah penduduk bumi ini. Kenyataan itulah yang membuat dunia sekarang berada pada dua ancaman sekaligus: pemanasan global yang terus meningkat sekaligus kelangkaan sumber energi masa depan akibat berkurangnya bahan bakar fosil. Beberapa solusi pun mulai ditawarkan oleh para ilmuwan. Salah satu yang paling efektif dan ramai diperbincangkan adalah penggunaan bahan bakar alternatif. Bahan bakar alternatif yang ramai diteliti para ilmuwan saat ini biasanya berasal dari sumber yang terbarukan atau tidak dapat habis seperti cahaya matahari, air, angin, panas bumi, dan biomassa. Hingga saat ini umumnya penelitian mengenai pemanfaatan terhadap sumber energi terbarukan tersebut cukup banyak, namun belum seluruhnya efektif dan efisien. Suatu terobosan ilmiah terbaru berhasil ditemukan sebuah tim riset yang terdiri atas para insinyur teknik kimia dari University of Massachusetts Amherst berhasil mengembangkan suatu mesin yang dapat memproduksi berbagai macam senyawa hidrokarbon dengan bahan baku minyak pirolisis sampah kebun atau sejenisnya. Ya, sampah kebun seperti kayu, ranting, cabang, kulit pohon, rumput-rumput, dedaunan, dan bagian tumbuhan lainnya merupakan sumber alami biomassa yang mengandung banyak selulosa dan minyak bio. Suatu proses pirolisis terhadap biomassa seperti ini dapat mengekstrak minyak bio yang terkandung di dalamnya untuk selanjutnya dapat diolah kembali menjadi berbagai senyawa hidrokarbon. Pirolisis merupakan dekomposisi termal bahan-bahan organik tanpa keberadaan oksigen, sehingga bahan organik yang terkandung di dalamnya tidak teroksidasi. Tim peneliti tersebut telah berhasil membuat mesin yang dapat memproduksi berbagai senyawa hidrokarbon secara lebih efektif dan efisien dari minyak bio hasil pirolisis karena dapat menhasilkan rendemen produk yang lebih tinggi. Senyawa yang dihasilkan antara lain benzena, toluena, xilena, berbagai senyawa olefin (alkena), dan senyawa alkohol (seperti metanol dan etanol). Senyawa-senyawa hidrokarbon tersebut dapat digunakan sebagai bahan baku kimia maupun sebagai sumber energi alternatif. Tim ini memperkirakan jika seluruh industri kimia di dunia dapat menggunakan senyawa biopirolisis yang dihasilkan mesin ini daripada menggunakan bahan bakar fosil akan terjadi penghematan hingga USD 400 milyar setiap tahunnya. Suatu jumlah yang sangat besar. Hasil penelitian ini tentu dapat memberi nilai tambah terhadap sampah-sampah organik yang ada di kebun pekarangan rumah kita ataupun di lingkungan lain yang serupa. Selain dapat diubah menjadi pupuk kompos, sampah tersebut juga dapat menghasilkan berbagai senyawa kimia yang dapat dimanfaatkan sebagai bahan baku produk kimia maupun sumber energi alternatif.

Dunia Tak Lagi Butuh Energi Fosil

Sekiranya hal itulah yang dapat dikatakan dari hasil studi terbaru yang dirilis oleh tim riset yang dipimpin oleh Mark Z. Jacobson dari Stanford University. Hal tersebut dapat dicapai dengan mengkonversi seluruh jenis penggunaan bahan bakar fosil dengan sumber energi terbarukan dan bersih, dengan begitu dunia dapat meninggalkan bahan bakar fosil. “Berdasarkan penemuan kami, sebenarnya tidak ada kendala dari segi ekonomi dan teknologi,” kata Jacobson, yang merupakan professor teknik sipil di institusi tersebut. “yang menjadi pertanyaan adalah dari segi aspek sosial dan politik.” Ia dan Mark Delucchi dari University of California-Davis telah menulis dua bagian makalah yang dipublikasikan pada Energy Policy, dimana mereka menilai harga, teknologi, dan materi yang dibutuhkan untuk mengubah dunia berdasarkan rancangan yang mereka buat. Dunia yang mereka impikan akan sangat bergantung kepada listrik. Rancangan mereka membutuhkan energi angin, air dan cahaya matahari sebagai sumber energi, dengan energi angin dan matahari berkontribusi sekitar 90% dari total energi yang dibutuhkan dunia. Energi geotermal dan hidroelektrik (energi listrik yang berasal dari energi potensial air) masing-masing menyumbangkan 4% dari total energi yang dibutuhkan, dan 2% sisanya akan berasal dari energi ombak dan gelombang pasang-surut. Kendaraan, kapal, dan kereta akan ditenagai oleh listrik dan sel bahan bakar hidrogen. Pesawat terbang dapat menggunakan bahan bakar hidrogen cair. Rumah-rumah dapat menggunakan pendingin atau pemanas ruangan bertenaga listrik, tidak lagi gas alam atau batubara. Proses komersial dan indutri dapat menggunakan hidrogen atau listrik. Hidrogen dapat dihasilkan dari elektrolisis air. Maka dari itu, energi angin, air, dan matahari akan mendominasi energi dunia. Salah satu keuntungan yang dapat diperoleh dari rancangan yg dibuat Jacobson dan Delucchi ini adalah reduksi kebutuhan energi dunia hingga 30% dibandingkan dengan pembakaran bahan bakar fosil. Listrik dan penggunaan sel bahan bakar hidrogen jauh lebih efektif dan efisien dibandingkan pembakaran bahan bakar fosil. Kendala yang paling nyata untuk mewujudkan rancangan ini adalah material yang dibutuhkan untuk membangun instalasi panel surya dan turbin angin. Diperlukan berbagai jenis logam dalam jumlah yang cukup besar, seperti besi, nikel, tembaga, aluminium, kromium dan bahkan logam langka seperti platina. Selain itu dalam mewujudkan infrastruktur generator angin yang ideal dibutuhkan lahan yang luas untuk menyediakan jarak agar tidak terjadi interferensi dan turbulensi angin yang digunakan. “Tetapi rancangan ini sangat mungkin untuk dilaksanakan, bahkan tanpa perlu menggunakan teknologi terbaru. Kita sangat membutuhkan keputusan kolektif tentang bagaimana masa depan dunia yang kita inginkan sebagai masyarakat dunia,” kata Jacobson. Bagaimanapun rancangan ini sangatlah revolusioner dan merupakan solusi yang baik dalam berbagai permasalahan energi dunia.

Evolusi Mikroorganisme di Laut Mati

Mikrobiologis dari Institute of Biology II University of Freiburg telah menemukan suatu jalur metabolisme sentral dari mikroorganisme yang sebelumnya tidak diketahui. Mikroorganisme ekstremofil (extremophile) atau mikroorganisme yang biasa hidup di tempat-tempat ekstrem ini menggunakan jalur metabolisme ini untuk dapat bertahan hidup di tempat-tempat ekstrem seperti halnya Laut Mati yang salinitasnya sangat tinggi. Bertentangan dengan anggapan yang popoler di masyarakat, Laut Mati tidaklah mati. Laut Mati yang berada di antara Yordania dan Israel ini berisi berbagai macam populasi mikroorganisme. Kebanyakan mikroorganisme ini termasuk dalam kelompok archaea yang toleran terhadap kadar garam tinggi. Archaea merupakan salah satu bentuk kehidupan yang paling awal terbentuk di muka bumi dan mampu bertahan hidup pada kondisi ekstrem. Tim riset di Freiburg yang dikepalai oleh Dr. Ivan Berg telah mempelajari proses metabolisme mikroorganisme ini yang sebelumnya selalu dihindari oleh ahli biologi evolusi. Ilmuwan telah lama mengetahui bahwa archaea yang toleran terhadap salinitas tinggi menggunakan berbagai macam senyawa organik sebagai sumber nutrisi mereka yang kemudian digunakan untuk mensintesis pelindung dinding sel dan vitamin yang teraktivasi asam asetat (asetil koenzim A). dengan menggunakan mikroorganisme Haloarcula marismortui sebagai model, Dr. Ivan Berg bersama koleganya di Freiburg Dr. Maria Khomyakova, Özlem Bükmez, Lorenz Thomas, dan Dr. Tobias Erb telah berhasil menguraikan secara detil jalur metabolisme mikroorganisme tersebut. Kabar terbaru dari jurnal Science, para peneliti menjelaskan bagaimana mereka dapat mengetahui keseluruhan siklus reaksi, termasuk seluruh intermediet yang terbentuk, dengan berbagai bantuan metode biokimia dan mikrobiologi. Tim ini memberi nama jalur metabolisme lengkap ini sebagai “siklus metilaspartat” setelah mengkarakterisasi zat antara yang penting dalam siklus tersebut. Grup riset Freiburg ini belum mengetahui awal terjadinya jalur metabolisme seperti ini dan diperkirakan merupakan salah satu bentuk evolusi dari pendahulunya yang harus menemukan jalur metabolisme tersendiri demi beradaptasi dengan habitatnya yang berkadar garam sangat tinggi. Para peneliti ini juga terkejut saat menemukan bahwa gen leluhur archaea yang mengandung informasi jalur metabolisme ini didapat dari mikroorganisme lain. Fenomena transfer gen antar-organisme ini sekarang biasa dikenal sebagai “transfer gen bercabang”. Bagaimanapun, ilmuwan belum mengobservasi gen terdahulu yang mengandung informasi siklus metilaspartat dan digolongkan sebagai jalur metabolisme yang benar-benar baru. Kemungkinan, rekombinasi gen lelulur archaea mengarah kepada jalur metabolisme ini. Para peneliti menyatakan bahwa lebih sulit untuk menemukan sebuah gen baru dibandingkan dengan mengkombinasikan gen-gen yang sudah ada.

Tembakau Untuk Penderita Diabetes

Bidang pertanian saat ini menghasilkan perkembangan bioteknologi molekular yang pesat, yang dapat menawarkan cara yang lebih murah daripada pembuatan vaksin dan obat tradisional melalui pabrik. Para ilmuwan telah menemukan tembakau yang menyehatkan setelah memodifikasi faktor genetiknya. Tembakau ini dapat digunakan untuk mengobati diabetes tipe 1. Peneliti Eropa mengatakan telah menghasilkan tembakau yang mengandung senyawa anti-inflamasi (anti-peradangan) yang disebut interleukin-10 (IL-10) yang dapat membantu pasien diabetes tipe 1 yang masih menggantungkan insulin. Sejumlah perusahaan kimia pertanian, termasuk Bayer dan Syngenta, telah mencari cara untuk membuat kompleks protein dalam tanaman obat-obatan, meskipun membutuhkan proses yang lambat. Pada saat ini, kebanyakan obat-obatan dan vaksin diproduksi melalui kultur sel dan kultur jaringan. Namun, Mario Pezzotti dari Universitas Verona, yang memimpin studi tentang tembakau yang diterbitkan dalam jurnal BMC Biotechnology, percaya bahwa tembakau tumbuh lebih efisien semenjak tanaman dunia memiliki biaya rendah untuk menghasilkan protein obat. Berbagai jenis tanaman telah dipelajari oleh sejumlah ilmuwan di seluruh dunia, tetapi tembakau merupakan tanaman yang paling digemari dalam hal riset. “Tembakau adalah tanaman yang fantastis karena mudah mentransformasi genetik dan dengan mudah dapat mempelajari seluruh tanaman dari satu sel,” ungkap Pezzotti. Kelompoknya bekerja dan menaruh minat terhadap tembakau raksasa, yaitu Philip Morris, yang mendukung konferensi tanaman berbasis obat di Verona pada bulan Juni. Pezzotti dan koleganya – yang menerima dana untuk penelitiannya dari Uni Eropa – sekarang berencana untuk megujicobakan tanaman tersebut ke tikus yang memiliki penyakit autoimmune untuk mengetahui responnya. Selanjutnya, mereka ingin menguji apakah pengulangan dosis kecil dapat membantu mencegah penyakit kencing manis pada orang, ketika diberikan bersamaan dengan senyawa lain yaitu glutamic acid decarboxylase (GAD65), yang juga telah diproduksi di tanaman tembakau. Diamyd, perusahaan bioteknologi di Swedia sudah menguji secara konvensional vaksin GAD65 terhadap penderita diabetes dalam masa uji coba klinis. Bidang pertanian molekuler belum menghasilkan produk komersial pertama, walaupun Israel Protalix BioTherapeutics telah melakukan uji klinis lanjutan pada enzim untuk pengobatan penyakit Gaucher yang dihasilkan melalui kultur sel wortel. Protalix rencana untuk mengirimkan obatnya untuk persetujuan dari Amerika Serikat dan Israel.

Sabtu, 17 September 2011

Menyatakan pH Larutan Basa

Prinsip penentuan pH suatu larutan basa sama dengan penentuan pH larutam asam, yaitu dibedakan untuk basa kuat dan basa lemah.
1. pH Basa Kuat Untuk menentukan pH basa-basa kuat (a = 1), maka terlebih dahulu dihitung nilai pOH larutan dari konsentrasi basanya.
Contoh:
a. Tentukan pH dari 100 ml larutan KOH 0.1 M !
b. Hitunglah pH dari 500 ml larutan Ca(OH)2 0.01 M !

Jawab:
a. KOH(aq) ®  K+(aq) + OH-(aq)
[OH-] = [KOH] = 0.1 = 10-1 M
pOH = - log 10-1 = 1
pH = 14 - pOH = 14 - 1 = 13

b. Ca(OH)2(aq) ®  Ca2+(aq) + 2 OH-(aq)
[OH-1] = 2[Ca(OH)2] = 2 x 0.01 = 2.10-2 M
pOH = - log 2.10-2 = 2 - log 2
pH = 14 - pOH = 14 - (2 - log 2) = 12 + log 2


2. pH Basa Lemah
Bagi basa-basa lemah, karena harga derajat ionisasinya ¹ 1, maka untuk menyatakan konsentrasi ion OH- digunakan rumus:
[OH-] = Ö (Cb . Kb)
dimana:
Cb = konsentrasi basa lemah
Kb = tetapan ionisasi basa lemah

Contoh:
Hitunglah pH dari 100 ml 0.001 M larutan NH4OH, jika diketahui tetapan ionisasinya = 10-5 !
Jawab:
[OH-] = Ö (Cb . Kb) = 10-3 . 10-5 = 10-4 M
pOH = - log 10-4 = 4
pH = 14 - pOH = 14 - 4 = 10

Menyatakan pH Larutan Asam

Untuk menyatakan nilai pH suatu larutan asam, maka yang paling awal harus ditentukan (dibedakan) antara asam kuat dengan asam lemah.
1. pH Asam Kuat

Bagi asam-asam kuat (
a = 1), maka menyatakan nilai pH larutannya dapat dihitung langsung dari konsentrasi asamnya (dengan melihat valensinya).

Contoh: 

1. Hitunglah pH dari 100 ml larutan 0.01 M HCl !

Jawab:

HCl(aq) ®  H+(aq) + Cl-(aq)
[H+] = [HCl] = 0.01 = 10-2 M
pH = - log 10-2 = 2

2. Hitunglah pH dari 2 liter larutan 0.1 mol asam sulfat !

Jawab:

H2SO4(aq) ®  2 H+(aq) + SO42-(aq)
[H+] = 2[H2SO4] = 2 x 0.1 mol/2.0 liter = 2 x 0.05 = 10-1 M
pH = - log 10-1 = 1

 
2. pH Asam Lemah
Bagi asam-asam lemah, karena harga derajat ionisasinya ¹ 1 (0 < a < 1) maka besarnya konsentrasi ion H+ tidak dapat dinyatakan secara langsung dari konsentrasi asamnya (seperti halnya asam kuat). Langkah awal yang harus ditempuh adalah menghitung besarnya [H+] dengan rumus
[H+] = Ö ( Ca . Ka)
dimana:
Ca = konsentrasi asam lemah
Ka = tetapan ionisasi asam lemah

Contoh:
Hitunglah pH dari 0.025 mol CH3COOH dalam 250 ml larutannya, jika diketahui Ka = 10-5
Jawab:
Ca = 0.025 mol/0.025 liter = 0.1 M = 10-1 M
[H+] = Ö
(Ca . Ka) = 10-1 . 10-5 = 10-3 M
pH = -log 10-3 = 3

Keradioaktifan Buatan, Rumus Dan Ringkasan

KERADIOAKTIFAN BUATAN
Perubahan inti yang terjadi karena ditembak oleh partikel.
Prinsip penembakan:
  • Jumlah nomor atom sebelum penembakan = jumlah nomor atom setelah penembakan.
  • Jumlah nomor massa sebelum penembakan = jumlah nomor massa setelah penembakan.
Misalnya:  714 N +  24 He ®  817 O + 11 p

RUMUS

k = (2.3/t) log (No/Nt)
k = 0.693/t1/2
t = 3.32 . t1/2 . log No/Nt
k = tetapan laju peluruhan
t = waktu peluruhan
No = jumlah bahan radioaktif mula-mula
Nt = jumlah bahan radioaktif pada saat t
t1/2 = waktu paruh


RINGKASAN

1. Kestabilan inti: umumnya suatu isotop dikatakan tidak stabil bila:
a. n/p > (1-1.6) 
b. e > 83 

e = elektron
n = neutron
p = proton

2. Peluruhan radioaktif:
a. Nt = No . e-1
b. 2.303 log No/Nt = k . t
c. k . t1/2 = 0.693
d. (1/2)n = Nt/No
    t1/2 x n = t

No = jumiah zat radioaktif mula-mula (sebelum meluruh)
Nt = jumiah zat radioaktif sisa (setelah meluruh)
k = tetapan peluruhan
t = waktu peluruhan
t1/2 = waktu paruh
n = faktor peluruhan

Contoh:
1. Suatu unsur radioaktif mempunyai waktu paruh 4 jam. Dari sejumlah No unsur tersebut setelah 1 hari berapa yang masih tersisa ?
Jawab:
t1/2 = 4 jam ; t= 1 hari = 24 jam
t1/2 x n = t ®
   n = t/t1/2 = 24/4 = 6
(1/2)n = Nt/No ®
   (1/2)6 = Nt/No ®   Nt = 1/64 No
2. 400 gram suatu zat radioaktif setelah disimpan selama 72 tahun ternyata masih tersisa sebanyak 6.25 gram. Berapakah waktu paruh unsur radioaktif tersebut ?
Jawab:
No = 400 gram
Nt = 6.25 gram
t = 72 tahun

(1/2)n = Nt/No = 6.25/400 = 1/64 = (1/2)6
n = 6 (n adalah faktor peluruhan)
t = t1/2 x n ® t1/2 = t/n = 72/6 = 12 tahun

Keradioaktifan Alam

Definisi : Bagian dari ilmu kimia yang mempelajari unsur-unsur yang bersifat radiokatif

MACAMNYA

KERADIOAKTIFAN ALAM
- Terjadi secara spontan

Misalnya: 92238 U ®
    90224 Th + 24 He
1. Jenis peluruhan
a. Radiasi Alfa
    
- terdiri dari inti 24 He
    - merupakan partikel yang massif
    - kecepatan 0.1 C
    - di udara hanya berjalan beberapa cm sebelum menumbuk
      molekul udara

b. Radiasi Beta
    
- terdiri dari elektron -10 e atau -10 beta
    - terjadi karena perubahan neutron 01 n ®
   1 1 p + -10 e
    - di udara kering bergerak sejauh 300 cm

c. Radiasi Gamma
     -
merupakan radiasi elektromagnetik yang berenergi tinggi
    - berasal dari inti
    - merupakan gejala spontan dari isotop radioaktif

d. Emisi Positron
     -
terdiri dari partikel yang bermuatan positif dan hampir sama
      dengan elektron
    - terjadi dari proton yang berubah menjadi neutron 1 1 p ®
   01
        n + +10 e
e. Emisi Neutron
     -
tidak menghasilkan isotop unsur lain

 
2. Kestabilan inti
- Pada umumnya unsur dengan nomor atom lebih besar dari 83
  adalah radioaktif.
- Kestabilan inti dipengaruhi oleh perbandingan antara neutron dan
  proton di dalam inti.

    * isotop dengan n/p di atas pita kestabilan menjadi stabil dengan
       memancarkan partikel beta.
    * isotop dengan n/p di bawah pita kestabilan menjadi stabil
       dengan menangkap elektron.
    * emisi positron terjadi pada inti ringan.
    * penangkapan elektron terjadi pada inti berat.

 
3. Deret keradioaktifan

Deret radioaktif ialah suatu kumpulan unsur-unsur hasil peluruhan suatu radioaktif yang berakhir dengan terbentuknya unsur yang stabil.

a. Deret Uranium-Radium

    Dimulai dengan  92 238 U dan berakhir dengan  82 206 Pb
b. Deret Thorium
    Dimulai oleh peluruhan  90 232 Th dan berakhir dengan  82 208 Pb
c. Deret Aktinium
    Dimulai dengan peluruhan 92 235 U dan berakhir dengan  82 207 Pb
d. Deret Neptunium
    Dimulai dengan peluruhan  93 237 Np dan berakhir dengan  83 209
    Bi

 


Stoikiometri Larutan

Pada stoikiometri larutan, di antara zat-zat yang terlibat reaksi, sebagian atau seluruhnya berada dalam bentuk larutan.
1. Stoikiometri dengan Hitungan Kimia Sederhana Soal-soal yang menyangkut bagian ini dapat diselesaikan dengan cara hitungan kimia sederhana yang menyangkut hubungan kuantitas antara suatu komponen dengan komponen lain dalam suatu reaksi.
Langkah-langkah yang perlu dilakukan adalah:
a. menulis persamann reaksi
b. menyetarakan koefisien reaksi
c. memahami bahwa perbandingan koefisien reaksi menyatakan perbandingan mol

Karena zat yang terlibat dalam reaksi berada dalam bentuk larutan, maka mol larutan dapat dinyatakan sebagai:
n = V . M
dimana:
n = jumlah mol
V = volume (liter)
M = molaritas larutan

Contoh:
Hitunglah volume larutan 0.05 M HCl yang diperlukan untuk melarutkan 2.4 gram logam magnesium (Ar = 24).
Jawab:
Mg(s) + 2HCl(aq) ®   MgCl2(aq) + H2(g)
24 gram Mg = 2.4/24 = 0.1 mol
mol HCl = 2 x mol Mg = 0.2 mol
volume HCl = n/M = 0.2/0.25 = 0.8 liter


2. Titrasi

Titrasi adalah cara penetapan kadar suatu larutan dengan menggunakan larutan standar yang sudah diketahui konsentrasinya. Motode ini banyak dilakukan di laboratorium. Beberapa jenis titrasi, yaitu:
1. titrasi asam-basa
2. titrasi redoks
3. titrasi pengendapan

Contoh:
1. Untuk menetralkan 50 mL larutan NaOH diperlukan 20 mL larutan 0.25 M HCl.
Tentukan kemolaran larutan NaOH !

Jawab:
NaOH(aq) + HCl(aq) ®   NaCl(aq) + H2O(l)
mol HCl = 20 x 0.25 = 5 m mol
Berdasarkan koefisien reaksi di atas.
mol NaOH = mol HCl = 5 m mol
M = n/V = 5 m mol/50mL = 0.1 M

2. Sebanyak 0.56 gram kalsium oksida tak murni dilarutkan ke dalam air. Larutan ini tepat dapat dinetralkan dengan 20 mL larutan 0.30 M HCl.Tentukan kemurnian kalsium oksida (Ar: O=16; Ca=56)!
Jawab:
CaO(s) + H2O(l) ®   Ca(OH)2(aq)
Ca(OH)2(aq) + 2 HCl(aq) ®
   CaCl2(aq) + 2 H2O(l)
mol HCl = 20 x 0.30 = 6 m mol
mol Ca(OH)2 = mol CaO = 1/2 x mol HCl = 1/2 x 6 = 3 m mol
massa CaO = 3 x 56 = 168 mg = 0.168 gram
Kadar kemurnian CaO = 0.168/0.56 x 100% = 30%

Teori Asam Basa

A. MENURUT ARRHENIUS

Asam ialah senyawa yang dalam larutannya dapat menghasilkan ion H+.

Basa ialah senyawa yang dalam larutannya dapat menghasilkan ion OH-.
Contoh:

1) HCl(aq)    ®  H+(aq) + Cl-(aq)
2) NaOH(aq) ®  Na+(aq) + OH-(aq)


B. MENURUT BRONSTED-LOWRY

Asam ialah proton donor, sedangkan basa adalah proton akseptor.

Contoh:

1) HAc(aq) + H2O(l)   «
     H3O+(aq) + Ac-(aq)
    asam-1    basa-2        asam-2       basa-1

HAc dengan Ac- merupakan pasangan asam-basa konyugasi.
H3O+ dengan H2O merupakan pasangan asam-basa konyugasi.

2) H2O(l) + NH3(aq)   «     NH4+(aq) + OH-(aq)
    asam-1   basa-2          asam-2     basa-1

H2O dengan OH- merupakan pasangan asam-basa konyugasi.
NH4+ dengan NH3 merupakan pasangan asam-basa konyugasi.

Pada contoh di atas terlihat bahwa air dapat bersifat sebagai asam (proton donor) dan sebagai basa (proton akseptor). Zat atau ion atau spesi seperti ini bersifat ampiprotik (amfoter).

Selasa, 13 September 2011

Menghitung Konsentrasi Ion Hidrogen H+ Pada Larutan Asam


Hitunglah konsentrasi ion H+ pada larutan-larutan berikut:
  1. Larutan asam sulfat H2SO4 0,005 M
  2. Larutan asam oksalat H2C2O4 0,004 M (Ka 10-5)
  3. Larutan asam sianida  HCN 0,1 M (alfa 10%)
Jawab:
1. Larutan asam sulfat adalah larutan asam kuat, jadi H2SO4 dalam larutan akan terionisasi sempurna menjadi ion H+ dan ion SO42-. Jadi kita mencari konsentrasi ion hydrogen H+ dalam larutan asam kuat dengan menggunakan rumus berikut:
Konsentrasi ion H+
= jumlah H+ x M asam
= 2 . 0,005
= 0,01 M
H2SO4 memiliki jumlah H+ sebanyak 2 jadi konsentrasi ion hidrogennya adalah perkalian antara jumlah H+ dengan molaritas asam sulfat. Secara stoikiometri reaksi adalah sebagai berikut:
H2SO4 ->  2H+     +    SO42-
0,005         2×0,005        0.005
2. Asam oksalat H2C2O4 adalah asam lemah dengan nilai tetapan asam 10-5. untuk mencari konsentrasi ion hydrogen dari asam lemah maka kita bisa menggunakan rumus sebagai berikut:
Jadi konsentrasi ion H+ nya adalah
= (10-51/2
= 2.10-4 M
3. Larutan asam sianida HCN 0,1 dengan alfa 10%, maka untuk mencari konsentrasi ion H+ nya kita harus menghubungkan dengan rumus derajat ionisasinya. Derajat ionisasi dinyatakan sebagai jumlah zat yang terdisosiasi dibagi dengan konsentrasi mula-mula, sehingga:
Derajat ionisasi = jumlah yang terdisosiasi / jumlah mula-mula x 100%
10 % = jumlah HCN yang terdisosiasi/0,1 x 100%
Jadi HCN yang terdisosiasi = 0,01 M
Karena HCN terdisosiasi dengan reaksi berikut maka:
HCN   ->     H+       +  CN-
0,01 M       0,01 M      0,01 M
Jadi konsentrasi ion hydrogen H+ dalam larutan HCN adalah 0,01 M.

Mobil Berbahan Bakar Gas Hydrogen-Bagaimana Bisa?


Sel bahan bakar (Fuel cell) merupakan cikal bakal penerapan sel elektrokimia pada alat transportasi. Sel bahan bakar tak lain adalah sel elektrokimia yang menggunakan zat-zat yang bersifat mudah terbakar seperti hydrogen, metana, methanol, bahkan solar untuk menghasilkan energi.
Yang sering dipergunakan dan diteliti oleh banyak institusi adalah sel bahan bakar yang menggunakan gas hydrogen. Sel jenis ini disebut sebagai “hydrogen fuel celll”(HFC). HFC ini menggunakan gas hydrogen dan gas oksigen sebagai oksidator, bahan bakar dengan menggunakan HFC tidak mencemari lingkungan karena limbahnya hanya berupa uap air. Reaksi yang terjadi dalam HFC dapat ditulis sebagai berikut:
H2 (g) + ½ O2 (g) -> H2O (l)
Pada suhu kamar dan tekanan 1 atm reaksi diatas menghasilkan E sel sebesar 1,23 Volt. Bagimana bisa sebuah mobil dapat dijalankan dengan menggunakan HFC yang hanya menghasilkan energi sebesar 1,23 V? Ingat besar E sel tersebut hanya untuk satu sel elektrokimia. Alat transportasi berbahan bakar hydrogen biasanya menggunakan benyak sekali sel elektrokimia yang saling berhubungan-dan tentu saja hal ini akan menghasilkan energi yang cukup untuk menggerakkan mobil bahkan sebuah bus.
Beberapa keuntungan dari HFC adalah pengurangan terhadap ketergantungan dengan bahan bakar fosil, efisiensi yang cukup tinggi, tidak menimbulkan dampak negative bagi lingkungan, relative cukup aman, pengurangan emisi karbon dan sebaginya.

Namun ada juga beberapa keterbatasan dari penggunaan HFC diantaranya tingginya biaya manufaktur, sulitnya penyimpanan gas hydrogen dimana gas hydrogen sangat reaktif, dan sulitnya untuk memindahkan hydrogen dari satu tempat ke tempat yang lain. Dapat kita bayangkan bahwa membawa gas hydrogen sama halnya dengan membawa bom atom ke mana-mana.
Namun dengan adanya keterbatasan tersebut akan semakin memacu para elektrokimiawan unutk melakukan riset lebih lanjut. Terbukti sekarang banyak mobil hybrid yang beredar dipasaran seperti Toyota Prius, Toyota Camry Hybrid, Ford Escape Hybrid, dan Honda Insight.
Siapa tahu mobil masa depan dapat dijalankan dengan mamakai energi cahaya atau atau bahan bakar bakteri? Who knows?

Mengubah CO2 Menjadi Metanol


14z806058Dalam laporan tertulis yang dimuat di International Chemistry Journal Angewandte Chemie, para ilmuwan Singapore Institute of Bioengineering and Nanotechnology (IBN) telah sukses memanfaatkan gas karbondioksida (CO2) untuk diubah menjadi methanol ( CH3OH ) dengan meggunakan organokatalis. “Hasil kerja kami telah berkontribusi dalam penggunaan CO2 yang terdapat di alam untuk diubah menjadi produk yang lebih menjanjikan yaitu methanol” kata Siti Nurhanna Riduan, salah satu staf senior IBN.
Hal yang sangat menarik dari penelitian yang dilakukan oleh peneliti IBN adalah reaksi perubahan karbondioksida menjadi methanol tidak dilakukan dalam kondisi yang ekstrim, seperti misalnya suhu dan tekanan tinggi serta kondisi lingkungan reaksi yang terkontrol akan tetapi reaksi tersebut dapat dijalankan pada suhu kamar dan tekanan biasa, dan yang lebih menarik lagi katalis yang terlibat dalam reaksi perubahan CO2 menjadi CH3OH relatif murah, stabil, mudah disimpan, dan tidak mengandung logam berat sehingga ramah terhadap lingkungan.
Diharapkan dengan menggunakan teknik yang dilakukan para peneliti IBN nantinya kita akan dapat memanfaatkan karbondioksida yang sangat berlimpah keberadaannya menjadi aternatif sumber energi industri yang murah.
Katalis yang dipergunakan oleh para peneliti IBN disini adalah dari golongan N-heterocyclic carbenes (NHCs).
Yegn Zhang, Ph.D, pemimpin team peneliti IBN menerangkan bahwa karbondiaksida akan bereaksi dengan NHCs membentuk NHCs-CO2 yang teraktifasi, CO2 yang teraktifasi ini akan tereduksi oleh Hidrosilan yang berfungsi sebagai penyedia hydrogen. Kemudian hasil reaksinya dihidrolisis menggunakan air sehingga dihasilkan methanol.
Penelitian kami sebelumnya menunjukan bahwa NHCs dapat dipergunakan lebih banyak lagi misalnya sebagai antioksidan untuk melawan proses degeneratif, dan sekarang kami sukses telah menggunakan NHCs untuk mengubah CO2 menjadi metanol yang membantu untuk mengurangi efek CO2 pada lingungan.
Di IBN kami banyak melakukan inovasi guna menemukan proses reaksi yang menggunakan energi yang bersih dengan bantuan “green chemistry” dan nanoteknologi, untuk menghadapi polusi lingkungan, pemanasan global, dan meningkatkan penggunaaan energi yang tidak berbasis bahan bakar fosil, kami berharap dapat menyediakan energi alternatif untuk industri kata direktur eksekutif IBN Jackie Y. Ying, Ph.D

Titrasi Asam Basa


titrasi asam basaTitrasi merupakan suatu metoda untuk menentukan kadar suatu zat dengan menggunakan zat lain yang sudah dikethaui konsentrasinya. Titrasi biasanya dibedakan berdasarkan jenis reaksi yang terlibat di dalam proses titrasi, sebagai contoh bila melibatan reaksi asam basa maka disebut sebagai titrasi asam basa, titrasi redox untuk titrasi yang melibatkan reaksi reduksi oksidasi, titrasi kompleksometri untuk titrasi yang melibatan pembentukan reaksi kompleks dan lain sebagainya. (disini hanya dibahas tentang titrasi asam basa)
Zat yang akan ditentukan kadarnya disebut sebagai “titrant” dan biasanya diletakan di dalam Erlenmeyer, sedangkan zat yang telah diketahui konsentrasinya disebut sebagai “titer” dan biasanya diletakkan di dalam “buret”. Baik titer maupun titrant biasanya berupa larutan.

Prinsip Titrasi Asam basa
Titrasi asam basa melibatkan asam maupun basa sebagai titer ataupun titrant. Titrasi asam basa berdasarkan reaksi penetralan. Kadar larutan asam ditentukan dengan menggunakan larutan basa dan sebaliknya.
Titrant ditambahkan titer sedikit demi sedikit sampai mencapai keadaan ekuivalen ( artinya secara stoikiometri titrant dan titer tepat habis bereaksi). Keadaan ini disebut sebagai “titik ekuivalen”.
Pada saat titik ekuivalent ini maka proses titrasi dihentikan, kemudian kita mencatat volume titer yang diperlukan untuk mencapai keadaan tersebut. Dengan menggunakan data volume titrant, volume dan konsentrasi titer maka kita bisa menghitung kadar titrant.
Cara Mengetahui Titik Ekuivalen
Ada dua cara umum untuk menentukan titik ekuivalen pada titrasi asam basa.
1. Memakai pH meter untuk memonitor perubahan pH selama titrasi dilakukan, kemudian membuat plot antara pH dengan volume titrant untuk memperoleh kurva titrasi. Titik tengah dari kurva titrasi tersebut adalah “titik ekuivalent”.
2. Memakai indicator asam basa. Indikator ditambahkan pada titrant sebelum proses titrasi dilakukan. Indikator ini akan berubah warna ketika titik ekuivalen terjadi, pada saat inilah titrasi kita hentikan.
Pada umumnya cara kedua dipilih disebabkan kemudahan pengamatan, tidak diperlukan alat tambahan, dan sangat praktis.
Indikator yang dipakai dalam titrasi asam basa adalah indicator yang perbahan warnanya dipengaruhi oleh pH. Penambahan indicator diusahakan sesedikit mungkin dan umumnya adalah dua hingga tiga tetes.
Untuk memperoleh ketepatan hasil titrasi maka titik akhir titrasi dipilih sedekat mungkin dengan titik equivalent, hal ini dapat dilakukan dengan memilih indicator yang tepat dan sesuai dengan titrasi yang akan dilakukan.
Keadaan dimana titrasi dihentikan dengan cara melihat perubahan warna indicator disebut sebagai “titik akhir titrasi”.
Rumus Umum Titrasi
Pada saat titik ekuivalen maka mol-ekuivalent asam akan sama dengan mol-ekuivalent basa, maka hal ini dapat kita tulis sebagai berikut:
mol-ekuivalen asam = mol-ekuivalen basa
Mol-ekuivalen diperoleh dari hasil perkalian antara Normalitas dengan volume maka rumus diatas dapat kita tulis sebagai:
NxV asam = NxV basa
Normalitas diperoleh dari hasil perkalian antara molaritas (M) dengan jumlah ion H+ pada asam atau jumlah ion OH pada basa, sehingga rumus diatas menjadi:
nxMxV asam = nxVxM basa
keterangan :
N = Normalitas
V = Volume
M = Molaritas
n = jumlah ion H+ (pada asam) atau OH – (pada basa)
Anda bisa menggunakan rumus diatas bila anda menhadapi soal-soal yang melibatkan titrasi.

Definisi Kelarutan (Solubility) yang dilambangkan dengan (s)


definisi kelarutanMisalkan kita mempunyai 3 buah beaker glass, yang masing-masing berisi air 50, 100, dan 150 mL. Pada beaker glass pertama kita tambahkan gula pasir sedikit demi sedikit sambil diaduk hingga gula pasirnya larut. Gula pasir ini terus kita tambahkan pada beaker glass yang pertama hingga gula pasir itu tepat tidak dapat larut lagi dalam air. Kemudian jumlah gula pasir yang kita tambahkan kita catat, misalnya untuk mencapai keadaan tersebut kita memerlukan 25 gr gula pasir untuk beaker glass pertama dan masing-masing 50 dan 75 gr untuk beaker glass kedua dan ketiga.
Dari percobaan diatas dapat di peroleh kesimpulan bahwa banyaknya gula pasir yang larut di dalam air tergantung dari jumlah air yang tersedia. Semakin besar jumlah air yang tersedia maka semakin banyak pula jumlah gula pasir yang dapat larut. Jadi dari sinilah kita merumuskan apa yang disebut dengan “kelarutan (s)
“kelarutan didefinisikan sebagai jumlah maksimum suatu zat yang dapat larut dalam sejumlah pelarut pada temperature tertentu”
Agar lebih jelas perhatikan contoh berikut, kelarutan sukrosa dalam 1 mL air pada suhu 50 C adalah 2,59 gr. Apabila kita menyediakan 10 mL air pada suhu yang sama maka sukrosa yang dapat larut adalah 25,9 gr, dan bila terdapat 100 mL air maka sukrosa yang dapat larut adalah 259 gr.

Menghitung Elektron Valensi Golongan Utama Dan Logam Transisi


Banyak siswa maupun mahasiswa yang masih bingung untuk menghitung elektron valensi dari unsur yang ada di golongan utama dan golongan transisi, nah dalam artikel ini maka saya akan menunjukkan cara menghitung elektron valensi untuk kedua golongan tersebut.

Oh ya kita definisikan dulu yuk apa itu pengertian elektron valensi:
‘Elektron valensi didefinisikan sebagai elektron yang terletak di bagian kulit paling luar atau di kulit yang memiliki tingkat energi yang paling tinggi, untuk mudahnya adalah elektron yang terletak di kulit dengan bilangan kuantum utama ‘n’ paling besar”
Jadi untuk menentukan elektron valensi dari golongan utama yang terelatak pada periode kedua dengan konfigurasi elektron sebagai berikut:
3Li 1s2 2s1
4Be 1s2 2s2
5B 1s2 2s2 2p1
6C 1s2 2s2 2p2
7N 1s2 2s2 2p3
8O 1s2 2s2 2p4
9F 1s2 2s2 2p5
10Ne 1s2 2s2 2p6
atau untuk kelas X SMU biasanya menggunakan rumus 2|8|18|32 dan seterusnya
3Li 2 1
4Be 2 2
5B 2 3
6C 2 4
7N 2 5
8O 2 6
9F 2 7
10Ne 2 8
Sesuai dengan definisi diatas maka elektron valensi dari 8 unsur golongan utama diatas adalah semua elektron yang terdapat di kulit utama ‘n’ = 2 yaitu ada di orbital s untuk Li dan Be masing-masing 1 dan 2. Serta di orbital 2s dan 2p untuk sisanya yaitu 3,4,5,6,7,8 untuk B, C, N, O, F, dan Ne.
Mudah bukan? hal yang sama juga dapat Anda lakukan untuk unsur golongan utama yang lain. Sedikit perbedaan terjadi pada unsur golongan transisi contohnya untuk logam transisi.
periode 4
21Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1
22Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2
23V 1s2 2s2 2p6 3s2 3p6 4s2 3d3
24Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5
26Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6
periode 5
46Pd 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10
47Ag 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 5s1 4d10
maka elektron valensi untuk Sc, Ti, V, Cr, dan Fe masing-masing adalah 2,2,2,1,dan 2. yaitu elektron yang terletak pada kulit terluar yaitu dikulit 4s. Hal yang sama terjadi pada unsur transisi periode kelima yaitu untuk Pd dan Ag masing-masing adalah 18 dan 1.
Jika kita menggambar struktur Lewis atau diagram molekular untuk logam transisi maka semua elektron valensi logam transisi yang terdapat dalam orbital d kita ikut sertakan, jadi untuk kasus Sc elektron valensinya adalah 3 , Ag 11, dan Pd adalah 18.
Mengapa hal ini terjadi?
Berbeda dengan unsur yang terdapat dalam golongan utama yang memenuhi aturan oktet, namun sayangnya aturan oktet ini tidak berlaku bagi golongan transisi jadi.
Penggunaan “Kaidah 18″ lebih mudah diterapkan dalam unsur golongan transisi. Sehingga golongan transisi akan cenderung membentuk ikatan dengan jumlah elektron 18, hal yang sama terjadi pada unsur golongan utama yang cenderung meniru gas mulia dengan konfigurasi elektron terluar adalah 8.
Jadi jumlah 18 ini adalah akibat penambahan 10 elektron dari orbital d. Jadi untuk Fe maka elektron valensinya adalah 8, Cr elektron valensinya 6, Ni elektron valensinya 10, Ag elektron valensinya 11.
Dengan cara yang sama kamu juga dapat menghitung elektron valensi logam transisi yang lain.

Proses Kimia Yang lebih Aman & Efisien Dengan Jenis Reaktor Baru


Eindhoven dengan 'spinning disc reactor' nya
Peneliti di Marco Meeuwse dari Eindhoven University of Technology (TU/e) telah mengembangkan suatu reaktor kimia unik yang mereka sebut dengan ‘spinning disc reactor’. Reaktor jenis ini terdiri dari sebuah silinder yang didalamnya terdapat rotor penggerak. Reaktor tersebut di klaim dapat membuat reaksi yang melibatkan gas, padatan, atau cairan menjadi lebih aman dan efisien, terutama untuk produksi obat-obatan serta industri kimia lainnya.
Ide pembuatan spinning disc reactor ini berasal dari co-supervisor Meeuwse dr.ir. John van der Schaf sekitar lima tahun lalu dimana saat itu beliau melihat suatu proyek penelitian yang menggunakan liquid yang disemprotkan pada disc berputar dan kemudian didorong keluar dengan memanfaatkan gaya sentrifugal.
Menurut Schaa kombinasi antara disc yang berputar dengan sebuah dinding akan menciptakan suatu turbulensi yang kuat hingga memicu efisiensi suatu reaksi. Selanjutnya diapun menyuruh salah satu kandidat doktor untuk menguji hipotesis ini.
Dan apa yang terjadi saat ini? keraguannya selama ini terjawab sudah. Sebuah reaktor telah dibuat sesuai dengan harapannya dulu.
“Secara nyata reaktor ini dapat melakukan banyak pekerjaan. Dan saya yakin reaktor ini mampu melakukan hal lebih baik dibandingkan dengan reaktor konvensional yang ada saat ini, namun selama ini kami tak menyangkanya bahwa dia mampu melakukannya dengan lebih baik,” tutur Meeuwse
Secara gampangnya cara kerja reaktor ini dapat dijelaskan sebagai berikut. Gas di umpankan ke dalam reaktor melalui dasar silinder dimana sebuah disc berputar ada tepat diatasnya. Gelembung gas akan terpecah saat gas melalui liquid yang berputar yang dilaluinya.
“Semakin cepat kecepatan berputarnya maka semakin kecil gelembung yang terbentuk sehingga luar areanya akan semakin besar. Inilah yang menyebabkan konversi laju reaksinya menjadi lebih tinggi begitu pula dengan transfer massanya,” ungkap Meeuwse menjelaskan.
Meeuwse juga berhasil menyusun disc ini dalam suatu rangkaian. Tiga buah disc dengan diameter 13 cm disusun dalam satu poros. Dia mengungkapkan jika setiap disc dapat melakukan hal yang sama maka total massa yang dapat dilakukan dalam rangkaian ini akan menjadi tiga kali lebih besar dan inilah kehebatannya.
Keuntungan lain dari reaktor ini adalah dalam segi keamanannya. Menurut dia reaktor ini lebih aman sebab ukurannya yang jauh lebih kecil dibandingkan dengan reaktor yang umum dipergunakan.
“Manfaat lain dari reaktor ini adalah lebih aman di bandingkan dengan reaktor konvensional disebabkan ukurannya yang jauh lebih kecil, dan ini merupakan manfaat terbesar dari reaktor tersebut,” pungkasnya.

Senin, 12 September 2011

Lem Super Lengket



lem lengket tokek
Sejak dahulu para ilmuwan terpikat dengan kemampuan tokek yang bisa berjalan melewati dinding maupun diatas atap rumah. Beberapa tahun terkahir, ilmuwan menemukan bahwa rambut-rambut kecil yang berada di bagian bawah telapak kaki tokek menjadi penyebab tokek memili kemampuan untuk menempel dengan kuat. Para ilmuwan pun mulai meniru hal ini untuk menciptakan lem perekat.
Sayangnya lem perekat yang ditiru dari tokek ini tak memiliki daya lengket yang mumpuni seperti yang dimiliki oleh tokek, setelah digunakan beberapa kali maka daya lengketnya pun berkurang.
Tak kurang akal maka para ilmuwan dari Northwwestern University di Everton mulai melirik ke hewan lain yang biasa hidup di air, yaitu sejenis remis. Remis ini seperti kerang, dan biasa hidup di sungai, danau atau laut. Remis ini memiliki kemampuan yang kuat untuk menempel di batu atau badan kapal, bahkan walaupun ada ombak yang menerjangnya, remis ini tetap kuat menempel di badan kapal.
Lalu sebenarnya bahan lengket apa yang dikeluarkan oleh remis ini? Ternyata dari kaki-kakinya remis ini mengeluarkan zat lengket mirip plester yang bisa menempel di obyek tempat dia bersandar. Zat ini bisa dipakai hingga 1000 kali tanpa kehilangan daya lengketnya. Tidak seperti plester yang biasa kita pakai jika dipakai berulang-ulang maka daya lengketnya akan berkurang. Dan kelebihan yang lain adalah mampu bekerja di bidang basah maupun kering.
Ilmuwan menyebut zat ini sebagai 3,4-dihydroxy-L-phenylalanine atau disingkat sebagai DOPA. Para ilmuwan pun membuat sebuah material mirip kaki tokek yang terdiri dari rambut-rambut halus dengan panjang 600 nm dan lebar 400 nm. Satu nanometer panjangnya adalah seperbilion meter.
Ilmuwan pun kemudian melapisi material ini dengan DOPA dan hasilnya material itu lengket ke sebuah obyek seperti layaknya sebuah plester. Lalu apa dari manfaat penemuan ini? Banyak sekali hal yang akan bisa dikembangkan misalnya dibidang kedokteran kita bisa membuat perban yang bisa menempel kuat ditubuh kita jadi perban itu tak akan bisa lepas walaupun kita sedang berenang atau dokter bisa menggunakannya untuk menutup luka akibat operasi.

Mol: Satuan Paling Penting Kimiawan



pengertian mol
Kimiawan melakukan banyak hal dalam laboratorium mereka. Salah satu contohnya adalah menentukan kuantitas suatu zat yang terkandung di dalam suatu materi, atau melakuakan sisntesis suatu senayawa. Pekerjaan ini tak luput dari pertanyaaan sebera banyakkah sesuatu yang ada disana? atau seberapa banyak zat yang bisa saya dapatkan?
Agar bisa mendapatkan jawaban pertanyaan diatas maka Kimiawan menggunakan persamaan reaksi sebagai dasar perhitungan mereka. Adapun dalam perhitungan ini tentu saja melibatkan suatu besaran yang nantinya bisa mengubungkan antara dunia mikroskopik (dalam hal ini atom, molekul, atau ion) dengan dunia makroskopik (dalam hal ini materi yang terdapat dialam yang dapat ditimbang dengan mudah).
Nah besaran yang menghubungkan ini kita namakan dengan ‘mol‘. Mol mewakili suatu bilangan yang besarnya adalah 6,022×1023 yang biasanya di sebut sebagai bilangan Avogadro, nama ini dipakai sebagai penghargaan kepada ilmuwan Amedeo Avogdro yang berperan penting dalam perkembangan prinsip mol.
Jika kita tulis dengan notasi panjanganya maka bilangan Avogardo akan tampak seperti berikut ini:
602.200.000.000.000.000.000.000
Bisakah Anda membayangkan berapa banyak bilangan ini? Satu mol biji beras akan menutupi wilayah daratan dunia dengan ketebalan 75 meter, dan jika Anda memiliki marshmallow sebanyak 1 mol maka permen ini bisa menutupi seluruh bagian Indonesia dengan ketebalan 600 mol, dan jika Anda punya satu mol buah semangka, maka wow…..jujur saya tak mau membayangkannya :D
Mengapa penting sekali untuk memahami konsep mol?
Ilmu kimia selalu berhubungan dengan atom, molekul, atau ion yang notabentenya berukuran sangat kecil. Amatlah sangat repot jika seorang kimiawan mengatakan kepada asistennya untuk mengambil satu juta molekul gula, atau mengambil 500 atom besi, Nah Anda bisa membayangkannya kan bagaimana pusingnya asisten ini untuk mengambil dan menghitung satu-satu zat tersebut. Dan saya yakin Anda pun tak akan mau melakukannya.
Adakah cara yang mudah untuk melakukannya? Yep, yaitu dengan cara menimbang. Logikanya seperti ini, Anda disuruh mengantongi 1 karung kacang kedelai ke dalam kantong plastik kecil dimana setiap plastik berisi 100 biji kacang kedelai. Anda dibayar 1000 rupiah untuk setiap kantongnya. Bagaimana usaha Anda agar pekerjaan Anda cepat selesai?
Tentu Anda akan mengambil misalnya, 10 biji kedelai dan kemudian menimbangnya. Misal berat 10 biji kedelai ini adalah 15 gram maka 100 biji kedelai beratnya adalah 150 gram. Lalu selanjutnya Anda tinggal menimbangnya 150 gram dan kemudian memasukannya ke kantong plastik. Bukankah pekerjaan ini jauh lebih mudah dibandingkan harus menghitung satu persatu?
Jadi gampanganya mol merupakan istilah yang hampis sama untuk menyatakan lusin (12 biji ), rim (500 lembar), atau kodi (10 biji). Mol menjembatani antara dunia mikroskopik dengan makroskopik. Mol bisa menunjukkan ada berapa banyak partikel yang terkandung di suatu zat sekaligus berapa masa dala satuan gram zat tersebut. Mengapa demikian?
Mol juga merupakan jumlah partiel yang terkandung dalam 12 gram tepat isotop atom karbon C-12. Ini artinya jika kamu memiliki 12 gram 12C maka kamu memiliki 6,022×1023 partikel karbon. Sedangkan untuk unsur lainnya maka 1 mol adalah sama dengan berat atomnya, atau untuk senyawa satu mol adalah rumus kimia senyawa tersebut dalam satuan gram.

Saya contohkan ya,
  • atom kalsium berat atomnya adalah 40, maka 1 mol kalsium beratnya adalah 40 gram.
  • air memiliki rumus molekul H2O, ini berarti berat molekulnya adalah (2×1 dari H + 1×16 dari O) yaitu 18, jadi 1 mol air masanya adalah 18 gram.
Atau dalam rumus kita bisa menuliskan:
mencari mol untuk unsur :

mencari mol untuk senyawa :

Sifat Kologatif Larutan: Rumus dan Penjelasan Umum


Sifat koligatif larutan merupakan sifat fisika suatu larutan yang dipengaruhi oleh banyaknya zat yang terlarut di dalam larutan tersebut dan tidak dipengaruhi oleh jenis, ukuran, atau masa zat. Jadi larutan gula dengan lautan NaCl bisa saja memiliki sifat koligatif yang sama. Sifat koligatif larutan ini meliputi:
  • Penurunan tekanan uap larutan
  • Kenaikan titik didih larutan
  • Penurunan titik beku larutan
  • Tekanan Osmosis
Banyaknya zat yang terkandung di dalam larutan ini dinyatakan dalam satuan konsentrasi, dimana dinyatakan dalam fraksi mol (untuk penurunan tekanan uap), molalitas (untuk kenaikan titik didih & penurunan titik beku larutan), serta molaritas untuk tekanan osmosis.
Selain konsentrasi diatas maka jumlah zat juga dipengaruhi oleh sifat alamiah zat itu sendiri, yaitu bisa tidaknya zat tersebut terionisasi di dalam suatu pelarut. Sebagai contoh glukosa C6H1O6 dan NaCl jika dilarutkan ke dalam air maka glukosa tidak akan terionisasi sedangkan NaCl akan terion menjadi ion Na+ dan Cl-.
Jika kedua larutan tersebut memiliki konsentrasi yang sama maka jumlah keduanya tiak akan sama. Larutan NaCl akan memiliki jumlah partikel dua kali lebih banyak dibandingkan dengan larutan gula disebabkan adanya ionisasi ini. Dan ini berarti larutan NaCl akan dua kali lebih banyak berinteraksi dengan molekul pelarut dibandingkan dengan larutan gula.
Oleh sebab itu maka penting sekali untuk mengetahui apakah larutan tersebut bersifat elektolit atau nonlektrolit jika Anda hendak menghitung sifat koligatif suatu larutan.
Rumus sifat koligatif larutan nonelektrolit
rumussifatkoligatiflarutannonelektrolit
Untk larutan elektrolit maka rumus diatas harus di koreksi dengan menggunakan vaktor Van’t Hoff yang dinyatakan sebagai berikut:
rumus faktor vanhoff:

n dapat ditentukan dengan sederhana seperti berikut NaCl berarti n= 2 sebab NaCl terionisasi menjadi Na+ dan Cl-, CaCl2 n=3 sebab CaCl2 terionisasi menjadi Ca2+ dan 2Cl- begitu dengan yang lainnya.
Rumus sifat koligatif larutan elektrolit

Keterangan:
  • delta P = penurunan tekanan uap
  • P = tekanan uap larutan
  • Po = tekanan uap pelarut
  • deltaTb = kenaikan titik didih larutan
  • Tbl = titik didih larutan
  • Tp = titik beku /tidik didih pelarut
  • delta Tf = penurunan titik beku larutan
  • Tfl = titik beku larutan
  • Kb = konstanta ebulioskopik
  • Kf = konstanta krisokopik
  • m = molalitas larutan
  • Xt = fraksi mol zat terlarut
  • i = vaktor van’t hoff
  • alfa = derajat ionisasi
  • n = jumlah partikel

Struktur Lewis dan Molekul SF4 -Sulfur (IV) Flourida

Struktur Lewis maupun molekul SF4 sulfur(IV) flourida atau belerang tetraflourida sangat mudah ditentukan. Caranya gampang kok, yuk checkit dot.
Belerang (S) berada di golongan VI A bersama dengan oksigen oleh sebab itu dia memiliki 6 elektron valensi, sedangkan flourin (F) berada di golongan VIIA dengan demikian memiliki elektron valensi 7. Perhatikan gambar dibawah ini untuk melihat struktur Lewis masing-masing unsur.

Atom F punya satu elektron yang tidak berpasangan, dan elektron inilah yang akan dipakai untuk berikatan secara kovalen dengan 1 elektron dari S, disebabkan SF4 membutuhkan 4 atom F maka elektron S yang tersisa adalah 2 dan ini menjadi pasangan elektron bebas. Perhatikan gambar dibawah:

struktur lewis sf4
Dari gambar diatas diketahui bahwa ada 5 pasangan elektron, maka bentuk dasar geometrinya adalah trigonal piramid namun disebabkan yang berpasangan adalah 4 dan 1 pasangan elektron bebas maka bentuk geometri dari SF4 adalah ‘seewsaw’ atau nama lainnya bipiramid segita (bayangkan seperti mainan jungkat jungkit anak-anak TK). Perhatikan gambar dibawah untuk lebih memahami.

SF4 dimana bilangan oksidasi S adalah +4 sedangkan F masing-masing -1. SF4 dibuat dari mereaksikan antara SCl2 dengan Cl2 dan NaF dengan reaksi sebagai berikut:
SCl2 + Cl2 + 4 NaF -> SF4 + 4 NaCl
SF4 dipergunakan dalam sintesis kimia organik untuk mengubah aldehid CHO dan keton C=O menjadi gugus fungsi CF atau CF2. Bentuk lain adalah SF6 yang memiliki geometri oktahedral.

KIMIA

Kimia sering disebut sebagai "ilmu pusat" karena menghubungkan berbagai ilmu lain, seperti fisika, ilmu bahan, nanoteknologi, biologi, farmasi, kedokteran, bioinformatika, dan geologi . Koneksi ini timbul melalui berbagai subdisiplin yang memanfaatkan konsep-konsep dari berbagai disiplin ilmu. Sebagai contoh, kimia fisik melibatkan penerapan prinsip-prinsip fisika terhadap materi pada tingkat atom dan molekul. Kimia berhubungan dengan interaksi materi yang dapat melibatkan dua zat atau antara materi dan energi, terutama dalam hubungannya dengan hukum pertama termodinamika. Kimia tradisional melibatkan interaksi antara zat kimia dalam reaksi kimia, yang mengubah satu atau lebih zat menjadi satu atau lebih zat lain. Kadang reaksi ini digerakkan oleh pertimbangan entalpi, seperti ketika dua zat berentalpi tinggi seperti hidrogen dan oksigen elemental bereaksi membentuk air, zat dengan entalpi lebih rendah. Reaksi kimia dapat difasilitasi dengan suatu katalis, yang umumnya merupakan zat kimia lain yang terlibat dalam media reaksi tapi tidak dikonsumsi (contohnya adalah asam sulfat yang mengkatalisasi elektrolisis air) atau fenomena immaterial (seperti radiasi elektromagnet dalam reaksi fotokimia). Kimia tradisional juga menangani analisis zat kimia, baik di dalam maupun di luar suatu reaksi, seperti dalam spektroskopi.
Semua materi normal terdiri dari atom atau komponen-komponen subatom yang membentuk atom; proton, elektron, dan neutron. Atom dapat dikombinasikan untuk menghasilkan bentuk materi yang lebih kompleks seperti ion, molekul, atau kristal. Struktur dunia yang kita jalani sehari-hari dan sifat materi yang berinteraksi dengan kita ditentukan oleh sifat zat-zat kimia dan interaksi antar mereka. Baja lebih keras dari besi karena atom-atomnya terikat dalam struktur kristal yang lebih kaku. Kayu terbakar atau mengalami oksidasi cepat karena ia dapat bereaksi secara spontan dengan oksigen pada suatu reaksi kimia jika berada di atas suatu suhu tertentu.
Zat cenderung diklasifikasikan berdasarkan energi, fase, atau komposisi kimianya. Materi dapat digolongkan dalam 4 fase, urutan dari yang memiliki energi paling rendah adalah padat, cair, gas, dan plasma. Dari keempat jenis fase ini, fase plasma hanya dapat ditemui di luar angkasa yang berupa bintang, karena kebutuhan energinya yang teramat besar. Zat padat memiliki struktur tetap pada suhu kamar yang dapat melawan gravitasi atau gaya lemah lain yang mencoba mengubahnya. Zat cair memiliki ikatan yang terbatas, tanpa struktur, dan akan mengalir bersama gravitasi. Gas tidak memiliki ikatan dan bertindak sebagai partikel bebas. Sementara itu, plasma hanya terdiri dari ion-ion yang bergerak bebas; pasokan energi yang berlebih mencegah ion-ion ini bersatu menjadi partikel unsur. Satu cara untuk membedakan ketiga fase pertama adalah dengan volume dan bentuknya: kasarnya, zat padat memeliki volume dan bentuk yang tetap, zat cair memiliki volume tetap tapi tanpa bentuk yang tetap, sedangkan gas tidak memiliki baik volume ataupun bentuk yang tetap.

Air yang dipanaskan akan berubah fase menjadi uap air.
Air (H2O) berbentuk cairan dalam suhu kamar karena molekul-molekulnya terikat oleh gaya antarmolekul yang disebut ikatan Hidrogen. Di sisi lain, hidrogen sulfida (H2S) berbentuk gas pada suhu kamar dan tekanan standar, karena molekul-molekulnya terikat dengan interaksi dwikutub (dipole) yang lebih lemah. Ikatan hidrogen pada air memiliki cukup energi untuk mempertahankan molekul air untuk tidak terpisah satu sama lain, tapi tidak untuk mengalir, yang menjadikannya berwujud cairan dalam suhu antara 0 °C sampai 100 °C pada permukaan laut. Menurunkan suhu atau energi lebih lanjut mengizinkan organisasi bentuk yang lebih erat, menghasilkan suatu zat padat, dan melepaskan energi. Peningkatan energi akan mencairkan es walaupun suhu tidak akan berubah sampai semua es cair. Peningkatan suhu air pada gilirannya akan menyebabkannya mendidih (lihat panas penguapan) sewaktu terdapat cukup energi untuk mengatasi gaya tarik antarmolekul dan selanjutnya memungkinkan molekul untuk bergerak menjauhi satu sama lain.
Ilmuwan yang mempelajari kimia sering disebut kimiawan. Sebagian besar kimiawan melakukan spesialisasi dalam satu atau lebih subdisiplin. Kimia yang diajarkan pada sekolah menengah sering disebut "kimia umum" dan ditujukan sebagai pengantar terhadap banyak konsep-konsep dasar dan untuk memberikan pelajar alat untuk melanjutkan ke subjek lanjutannya. Banyak konsep yang dipresentasikan pada tingkat ini sering dianggap tak lengkap dan tidak akurat secara teknis. Walaupun demikian, hal tersebut merupakan alat yang luar biasa. Kimiawan secara reguler menggunakan alat dan penjelasan yang sederhana dan elegan ini dalam karya mereka, karena terbukti mampu secara akurat membuat model reaktivitas kimia yang sangat bervariasi.
Ilmu kimia secara sejarah merupakan pengembangan baru, tapi ilmu ini berakar pada alkimia yang telah dipraktikkan selama berabad-abad di seluruh dunia.

Sejarah


Robert Boyle, perintis kimia modern dengan menggunakan eksperimen terkontrol, sebagai kontras dari metode alkimia terdahulu.
Akar ilmu kimia dapat dilacak hingga fenomena pembakaran. Api merupakan kekuatan mistik yang mengubah suatu zat menjadi zat lain dan karenanya merupakan perhatian utama umat manusia. Adalah api yang menuntun manusia pada penemuan besi dan gelas. Setelah emas ditemukan dan menjadi logam berharga, banyak orang yang tertarik menemukan metode yang dapat mengubah zat lain menjadi emas. Hal ini menciptakan suatu protosains yang disebut Alkimia. Alkimia dipraktikkan oleh banyak kebudayaan sepanjang sejarah dan sering mengandung campuran filsafat, mistisisme, dan protosains.
Alkimiawan menemukan banyak proses kimia yang menuntun pada pengembangan kimia modern. Seiring berjalannya sejarah, alkimiawan-alkimiawan terkemuka (terutama Abu Musa Jabir bin Hayyan dan Paracelsus) mengembangkan alkimia menjauh dari filsafat dan mistisisme dan mengembangkan pendekatan yang lebih sistematik dan ilmiah. Alkimiawan pertama yang dianggap menerapkan metode ilmiah terhadap alkimia dan membedakan kimia dan alkimia adalah Robert Boyle (1627–1691). Walaupun demikian, kimia seperti yang kita ketahui sekarang diciptakan oleh Antoine Lavoisier dengan hukum kekekalan massanya pada tahun 1783. Penemuan unsur kimia memiliki sejarah yang panjang yang mencapai puncaknya dengan diciptakannya tabel periodik unsur kimia oleh Dmitri Mendeleyev pada tahun 1869.
Penghargaan Nobel dalam Kimia yang diciptakan pada tahun 1901 memberikan gambaran bagus mengenai penemuan kimia selama 100 tahun terakhir. Pada bagian awal abad ke-20, sifat subatomik atom diungkapkan dan ilmu mekanika kuantum mulai menjelaskan sifat fisik ikatan kimia. Pada pertengahan abad ke-20, kimia telah berkembang sampai dapat memahami dan memprediksi aspek-aspek biologi yang melebar ke bidang biokimia.
Industri kimia mewakili suatu aktivitas ekonomi yang penting. Pada tahun 2004, produsen bahan kimia 50 teratas global memiliki penjualan mencapai 587 bilyun dolar AS dengan margin keuntungan 8,1% dan pengeluaran riset dan pengembangan 2,1% dari total penjualan [2].

Cabang ilmu kimia


Pipet laboratorium
Kimia umumnya dibagi menjadi beberapa bidang utama. Terdapat pula beberapa cabang antar-bidang dan cabang-cabang yang lebih khusus dalam kimia.
Lima Cabang Utama:
Cabang - cabang Ilmu Kimia yang merupakan tumpang-tindih satu atau lebih lima cabang utama:
Bidang lain antara lain adalah astrokimia, biologi molekular, elektrokimia, farmakologi, fitokimia, fotokimia, genetika molekular, geokimia, ilmu bahan, kimia aliran, kimia atmosfer, kimia benda padat, kimia hijau, kimia inti, kimia medisinal, kimia komputasi, kimia lingkungan, kimia organologam, kimia permukaan, kimia polimer, kimia supramolekular, nanoteknologi, petrokimia, sejarah kimia, sonokimia, teknik kimia, serta termokimia.

Konsep dasar

Tatanama


Logo IUPAC.
Tatanama kimia merujuk pada sistem penamaan senyawa kimia. Telah dibuat sistem penamaan spesies kimia yang terdefinisi dengan baik. Senyawa organik diberi nama menurut sistem tatanama organik. Senyawa anorganik dinamai menurut sistem tatanama anorganik.

Atom

Atom adalah suatu kumpulan materi yang terdiri atas inti yang bermuatan positif, yang biasanya mengandung proton dan neutron, dan beberapa elektron di sekitarnya yang mengimbangi muatan positif inti. Atom juga merupakan satuan terkecil yang dapat diuraikan dari suatu unsur dan masih mempertahankan sifatnya, terbentuk dari inti yang rapat dan bermuatan positif dikelilingi oleh suatu sistem elektron.

Unsur


Bijih uranium
Unsur adalah sekelompok atom yang memiliki jumlah proton yang sama pada intinya. Jumlah ini disebut sebagai nomor atom unsur. Sebagai contoh, semua atom yang memiliki 6 proton pada intinya adalah atom dari unsur kimia karbon, dan semua atom yang memiliki 92 proton pada intinya adalah atom unsur uranium.

Ion

Ion atau spesies bermuatan, atau suatu atom atau molekul yang kehilangan atau mendapatkan satu atau lebih elektron. Kation bermuatan positif (misalnya kation natrium Na+) dan anion bermuatan negatif (misalnya klorida Cl) dapat membentuk garam netral (misalnya natrium klorida, NaCl). Contoh ion poliatom yang tidak terpecah sewaktu reaksi asam-basa adalah hidroksida (OH) dan fosfat (PO43−).

Senyawa

Senyawa merupakan suatu zat yang dibentuk oleh dua atau lebih unsur dengan perbandingan tetap yang menentukan susunannya. sebagai contoh, air merupakan senyawa yang mengandung hidrogen dan oksigen dengan perbandingan dua terhadap satu. Senyawa dibentuk dan diuraikan oleh reaksi kimia.

Molekul

Molekul adalah bagian terkecil dan tidak terpecah dari suatu senyawa kimia murni yang masih mempertahankan sifat kimia dan fisik yang unik. Suatu molekul terdiri dari dua atau lebih atom yang terikat satu sama lain.

Zat kimia

Suatu 'zat kimia' dapat berupa suatu unsur, senyawa, atau campuran senyawa-senyawa, unsur-unsur, atau senyawa dan unsur. Sebagian besar materi yang kita temukan dalam kehidupan sehari-hari merupakan suatu bentuk campuran, misalnya air, aloy, biomassa, dll.

Ikatan kimia


Orbital atom dan orbital molekul elektron
Ikatan kimia merupakan gaya yang menahan berkumpulnya atom-atom dalam molekul atau kristal. Pada banyak senyawa sederhana, teori ikatan valensi dan konsep bilangan oksidasi dapat digunakan untuk menduga struktur molekular dan susunannya. Serupa dengan ini, teori-teori dari fisika klasik dapat digunakan untuk menduga banyak dari struktur ionik. Pada senyawa yang lebih kompleks/rumit, seperti kompleks logam, teori ikatan valensi tidak dapat digunakan karena membutuhken pemahaman yang lebih dalam dengan basis mekanika kuantum.

Wujud zat

Fase adalah kumpulan keadaan sebuah sistem fisik makroskopis yang relatif serbasama baik itu komposisi kimianya maupun sifat-sifat fisikanya (misalnya masa jenis, struktur kristal, indeks refraksi, dan lain sebagainya). Contoh keadaan fase yang kita kenal adalah padatan, cair, dan gas. Keadaan fase yang lain yang misalnya plasma, kondensasi Bose-Einstein, dan kondensasi Fermion. Keadaan fase dari material magnetik adalah paramagnetik, feromagnetik dan diamagnetik.

Reaksi kimia


Reaksi kimia antara hidrogen klorida dan amonia membentuk senyawa baru amonium klorida
Reaksi kimia adalah transformasi/perubahan dalam struktur molekul. Reaksi ini bisa menghasilkan penggabungan molekul membentuk molekul yang lebih besar, pembelahan molekul menjadi dua atau lebih molekul yang lebih kecil, atau penataulangan atom-atom dalam molekul. Reaksi kimia selalu melibatkan terbentuk atau terputusnya ikatan kimia.

Kimia kuantum

Kimia kuantum secara matematis menjelaskan kelakuan dasar materi pada tingkat molekul. Secara prinsip, dimungkinkan untuk menjelaskan semua sistem kimia dengan menggunakan teori ini. Dalam praktiknya, hanya sistem kimia paling sederhana yang dapat secara realistis diinvestigasi dengan mekanika kuantum murni dan harus dilakukan hampiran untuk sebagian besar tujuan praktis (misalnya, Hartree-Fock, pasca-Hartree-Fock, atau teori fungsi kerapatan, lihat kimia komputasi untuk detilnya). Karenanya, pemahaman mendalam mekanika kuantum tidak diperlukan bagi sebagian besar bidang kimia karena implikasi penting dari teori (terutama hampiran orbital) dapat dipahami dan diterapkan dengan lebih sederhana.
Dalam mekanika kuantum (beberapa penerapan dalam kimia komputasi dan kimia kuantum), Hamiltonan, atau keadaan fisik, dari partikel dapat dinyatakan sebagai penjumlahan dua operator, satu berhubungan dengan energi kinetik dan satunya dengan energi potensial. Hamiltonan dalam persamaan gelombang Schrödinger yang digunakan dalam kimia kuantum tidak memiliki terminologi bagi putaran elektron.
Penyelesaian persamaan Schrödinger untuk atom hidrogen memberikan bentuk persamaan gelombang untuk orbital atom, dan energi relatif dari orbital 1s, 2s, 2p, dan 3p. Hampiran orbital dapat digunakan untuk memahami atom lainnya seperti helium, litium, dan karbon.

Hukum kimia

Hukum-hukum kimia sebenarnya merupakan hukum fisika yang diterapkan dalam sistem kimia. Konsep yang paling mendasar dalam kimia adalah Hukum kekekalan massa yang menyatakan bahwa tidak ada perubahan jumlah zat yang terukur pada saat reaksi kimia biasa. Fisika modern menunjukkan bahwa sebenarnya energilah yang kekal, dan bahwa energi dan massa saling berkaitan. Kekekalan energi ini mengarahkan kepada pentingnya konsep kesetimbangan, termodinamika, dan kinetika.

Industri Kimia

Industri kimia adalah salah satu aktivitas ekonomi yang penting. Top 50 produser kimia dunia pada tahun 2004 mempunyai penjualan sebesar USD $587 milyar dengan profit margin sebesar 8.1% dan penegluaran rekayasa (research and development) sebesar 2.1% dari total
penjualan kimia.
Referensi

Entri Populer

twitter


ShoutMix chat widget

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More