Unsur Karbon Bukan Berasal dari Big Bang

Teori terbentuknya alam semesta yang saat ini dipercaya dan telah memiliki banyak bukti pendukung adalah teori ledakan besar (Big Bang). Namun pertanyaan besar masih muncul mengenai misteri terbentuknya kehidupan di Bumi setelah terjadinya Big Bang. Telah diketahui bahwa sebenarnya Big Bang tidak memproduksi karbon secara langsung. Lalu bagaimanakah unsur karbon terbentuk sehingga menghasilkan bentuk kehidupan berbasis karbon di Bumi? Pertanyaan itulah yang menjadi dasar riset tim peneliti dari North Carolina State University. Tim ini menggunakan simulasi superkomputer untuk mendemonstrasikan bagaimana karbon terbentuk di bintang untuk membuktikan sebuah teori lama. Lebih dari 50 tahun yang lalu, seorang astronom bernama Fred Hoyle berhipotesis bahwa isotop karbon-12 (C-12) dapat terbentuk dari tiga atom helium-4 (He-4) atau partikel alfa yang bergabung di dalam inti bintang. Namun, ketiga partikel alfa itu sulit untuk berkombinasi membentuk karbon. Sehingga dari hipotesisnya tersebut, Hoyle beranggapan bahwa terbentuk isotop karbon-12 dengan keadaan energi yang berbeda sehingga memungkinkan terbentuknya karbon di dalam inti bintang. Keadaan baru ini disebut sebagai “keadaan Hoyle”. Eksperimen terakhir menunjukkan bahwa teori tersebut benar namun simulasi pembentukan karbon dari partikel alfa masih belum berhasil. Fisikawan NCSU, Dean Lee bersama koleganya dari Jerman Evgeny Epelbaum, Hermann Krebs, dan Ulf-G. Meissner telah mengembangkan suatu metode baru yang menjelaskan seluruh cara yang mungkin agar proton dan neutron dapat berikatan satu sama lain di dalam inti. Metode ini disebut sebagai “teori medan efektif” yang diformulasi dari kisi bilangan kompleks. Bilangan kompleks merupakan bilangan yang terdiri atas bilangan real dan imajiner. Bentuk umum persamaan bilangan kompleks mengandung unit imajiner (i) yaitu akar kuadrat –1. Persamaan yang menggunakan bilangan kompleks tidak dapat menghasilkan solusi apabila hanya digunakan bilangan real saja atau bilangan imajiner saja. Persamaan matematis yang mengandung bilangan kompleks biasanya digambarkan dalam diagram Argand. Diagram ini memuat sumbu-x sebagai bilangan real dan sumbu-y sebagai bilangan imajiner, serta daerah di antaranya disebut bidang kompleks. Dengan pemodelan yang menggunakan analisis kompleks ini, peneliti dapat mensimulasikan interaksi antar partikel. Ketika peneliti menempatkan 6 proton dan 6 neutron pada kisi kubus dalam simulasi superkomputer tersebut, isotop karbon-12 dalam keadaan Hoyle terbentuk. Melalui hasil tersebut disimpulkan bahwa simulasi ini valid dan terbukti dapat menjelaskan pembentukan karbon. Dengan menggunakan simulasi superkomputer berbasis bilangan kompleks ini, persamaan yang menggambarkan keadaan Hoyle pada pembentukan karbon-12 di dalam inti bintang dapat dicari. Selain itu, simulasi ini juga dapat menjelaskan bagaimana unsur karbon terbentuk dan kehidupan berbasis karbon di Bumi berawal.

Menuai Bahan Bakar Alternatif dari Sampah Kebun

Tidak dapat dipungkiri bahwa hingga saat ini, bahan bakar fosil merupakan bahan bakar yang paling luas dan paling sering digunakan oleh seluruh manusia di dunia ini. Penggunaan jenis bahan bakar ini semakin lama semakin tinggi, seiring dengan meningkatnya aktivitas dan jumlah penduduk bumi ini. Kenyataan itulah yang membuat dunia sekarang berada pada dua ancaman sekaligus: pemanasan global yang terus meningkat sekaligus kelangkaan sumber energi masa depan akibat berkurangnya bahan bakar fosil. Beberapa solusi pun mulai ditawarkan oleh para ilmuwan. Salah satu yang paling efektif dan ramai diperbincangkan adalah penggunaan bahan bakar alternatif. Bahan bakar alternatif yang ramai diteliti para ilmuwan saat ini biasanya berasal dari sumber yang terbarukan atau tidak dapat habis seperti cahaya matahari, air, angin, panas bumi, dan biomassa. Hingga saat ini umumnya penelitian mengenai pemanfaatan terhadap sumber energi terbarukan tersebut cukup banyak, namun belum seluruhnya efektif dan efisien. Suatu terobosan ilmiah terbaru berhasil ditemukan sebuah tim riset yang terdiri atas para insinyur teknik kimia dari University of Massachusetts Amherst berhasil mengembangkan suatu mesin yang dapat memproduksi berbagai macam senyawa hidrokarbon dengan bahan baku minyak pirolisis sampah kebun atau sejenisnya. Ya, sampah kebun seperti kayu, ranting, cabang, kulit pohon, rumput-rumput, dedaunan, dan bagian tumbuhan lainnya merupakan sumber alami biomassa yang mengandung banyak selulosa dan minyak bio. Suatu proses pirolisis terhadap biomassa seperti ini dapat mengekstrak minyak bio yang terkandung di dalamnya untuk selanjutnya dapat diolah kembali menjadi berbagai senyawa hidrokarbon. Pirolisis merupakan dekomposisi termal bahan-bahan organik tanpa keberadaan oksigen, sehingga bahan organik yang terkandung di dalamnya tidak teroksidasi. Tim peneliti tersebut telah berhasil membuat mesin yang dapat memproduksi berbagai senyawa hidrokarbon secara lebih efektif dan efisien dari minyak bio hasil pirolisis karena dapat menhasilkan rendemen produk yang lebih tinggi. Senyawa yang dihasilkan antara lain benzena, toluena, xilena, berbagai senyawa olefin (alkena), dan senyawa alkohol (seperti metanol dan etanol). Senyawa-senyawa hidrokarbon tersebut dapat digunakan sebagai bahan baku kimia maupun sebagai sumber energi alternatif. Tim ini memperkirakan jika seluruh industri kimia di dunia dapat menggunakan senyawa biopirolisis yang dihasilkan mesin ini daripada menggunakan bahan bakar fosil akan terjadi penghematan hingga USD 400 milyar setiap tahunnya. Suatu jumlah yang sangat besar. Hasil penelitian ini tentu dapat memberi nilai tambah terhadap sampah-sampah organik yang ada di kebun pekarangan rumah kita ataupun di lingkungan lain yang serupa. Selain dapat diubah menjadi pupuk kompos, sampah tersebut juga dapat menghasilkan berbagai senyawa kimia yang dapat dimanfaatkan sebagai bahan baku produk kimia maupun sumber energi alternatif.

Dunia Tak Lagi Butuh Energi Fosil

Sekiranya hal itulah yang dapat dikatakan dari hasil studi terbaru yang dirilis oleh tim riset yang dipimpin oleh Mark Z. Jacobson dari Stanford University. Hal tersebut dapat dicapai dengan mengkonversi seluruh jenis penggunaan bahan bakar fosil dengan sumber energi terbarukan dan bersih, dengan begitu dunia dapat meninggalkan bahan bakar fosil. “Berdasarkan penemuan kami, sebenarnya tidak ada kendala dari segi ekonomi dan teknologi,” kata Jacobson, yang merupakan professor teknik sipil di institusi tersebut. “yang menjadi pertanyaan adalah dari segi aspek sosial dan politik.” Ia dan Mark Delucchi dari University of California-Davis telah menulis dua bagian makalah yang dipublikasikan pada Energy Policy, dimana mereka menilai harga, teknologi, dan materi yang dibutuhkan untuk mengubah dunia berdasarkan rancangan yang mereka buat. Dunia yang mereka impikan akan sangat bergantung kepada listrik. Rancangan mereka membutuhkan energi angin, air dan cahaya matahari sebagai sumber energi, dengan energi angin dan matahari berkontribusi sekitar 90% dari total energi yang dibutuhkan dunia. Energi geotermal dan hidroelektrik (energi listrik yang berasal dari energi potensial air) masing-masing menyumbangkan 4% dari total energi yang dibutuhkan, dan 2% sisanya akan berasal dari energi ombak dan gelombang pasang-surut. Kendaraan, kapal, dan kereta akan ditenagai oleh listrik dan sel bahan bakar hidrogen. Pesawat terbang dapat menggunakan bahan bakar hidrogen cair. Rumah-rumah dapat menggunakan pendingin atau pemanas ruangan bertenaga listrik, tidak lagi gas alam atau batubara. Proses komersial dan indutri dapat menggunakan hidrogen atau listrik. Hidrogen dapat dihasilkan dari elektrolisis air. Maka dari itu, energi angin, air, dan matahari akan mendominasi energi dunia. Salah satu keuntungan yang dapat diperoleh dari rancangan yg dibuat Jacobson dan Delucchi ini adalah reduksi kebutuhan energi dunia hingga 30% dibandingkan dengan pembakaran bahan bakar fosil. Listrik dan penggunaan sel bahan bakar hidrogen jauh lebih efektif dan efisien dibandingkan pembakaran bahan bakar fosil. Kendala yang paling nyata untuk mewujudkan rancangan ini adalah material yang dibutuhkan untuk membangun instalasi panel surya dan turbin angin. Diperlukan berbagai jenis logam dalam jumlah yang cukup besar, seperti besi, nikel, tembaga, aluminium, kromium dan bahkan logam langka seperti platina. Selain itu dalam mewujudkan infrastruktur generator angin yang ideal dibutuhkan lahan yang luas untuk menyediakan jarak agar tidak terjadi interferensi dan turbulensi angin yang digunakan. “Tetapi rancangan ini sangat mungkin untuk dilaksanakan, bahkan tanpa perlu menggunakan teknologi terbaru. Kita sangat membutuhkan keputusan kolektif tentang bagaimana masa depan dunia yang kita inginkan sebagai masyarakat dunia,” kata Jacobson. Bagaimanapun rancangan ini sangatlah revolusioner dan merupakan solusi yang baik dalam berbagai permasalahan energi dunia.

Evolusi Mikroorganisme di Laut Mati

Mikrobiologis dari Institute of Biology II University of Freiburg telah menemukan suatu jalur metabolisme sentral dari mikroorganisme yang sebelumnya tidak diketahui. Mikroorganisme ekstremofil (extremophile) atau mikroorganisme yang biasa hidup di tempat-tempat ekstrem ini menggunakan jalur metabolisme ini untuk dapat bertahan hidup di tempat-tempat ekstrem seperti halnya Laut Mati yang salinitasnya sangat tinggi. Bertentangan dengan anggapan yang popoler di masyarakat, Laut Mati tidaklah mati. Laut Mati yang berada di antara Yordania dan Israel ini berisi berbagai macam populasi mikroorganisme. Kebanyakan mikroorganisme ini termasuk dalam kelompok archaea yang toleran terhadap kadar garam tinggi. Archaea merupakan salah satu bentuk kehidupan yang paling awal terbentuk di muka bumi dan mampu bertahan hidup pada kondisi ekstrem. Tim riset di Freiburg yang dikepalai oleh Dr. Ivan Berg telah mempelajari proses metabolisme mikroorganisme ini yang sebelumnya selalu dihindari oleh ahli biologi evolusi. Ilmuwan telah lama mengetahui bahwa archaea yang toleran terhadap salinitas tinggi menggunakan berbagai macam senyawa organik sebagai sumber nutrisi mereka yang kemudian digunakan untuk mensintesis pelindung dinding sel dan vitamin yang teraktivasi asam asetat (asetil koenzim A). dengan menggunakan mikroorganisme Haloarcula marismortui sebagai model, Dr. Ivan Berg bersama koleganya di Freiburg Dr. Maria Khomyakova, Özlem Bükmez, Lorenz Thomas, dan Dr. Tobias Erb telah berhasil menguraikan secara detil jalur metabolisme mikroorganisme tersebut. Kabar terbaru dari jurnal Science, para peneliti menjelaskan bagaimana mereka dapat mengetahui keseluruhan siklus reaksi, termasuk seluruh intermediet yang terbentuk, dengan berbagai bantuan metode biokimia dan mikrobiologi. Tim ini memberi nama jalur metabolisme lengkap ini sebagai “siklus metilaspartat” setelah mengkarakterisasi zat antara yang penting dalam siklus tersebut. Grup riset Freiburg ini belum mengetahui awal terjadinya jalur metabolisme seperti ini dan diperkirakan merupakan salah satu bentuk evolusi dari pendahulunya yang harus menemukan jalur metabolisme tersendiri demi beradaptasi dengan habitatnya yang berkadar garam sangat tinggi. Para peneliti ini juga terkejut saat menemukan bahwa gen leluhur archaea yang mengandung informasi jalur metabolisme ini didapat dari mikroorganisme lain. Fenomena transfer gen antar-organisme ini sekarang biasa dikenal sebagai “transfer gen bercabang”. Bagaimanapun, ilmuwan belum mengobservasi gen terdahulu yang mengandung informasi siklus metilaspartat dan digolongkan sebagai jalur metabolisme yang benar-benar baru. Kemungkinan, rekombinasi gen lelulur archaea mengarah kepada jalur metabolisme ini. Para peneliti menyatakan bahwa lebih sulit untuk menemukan sebuah gen baru dibandingkan dengan mengkombinasikan gen-gen yang sudah ada.

Tembakau Untuk Penderita Diabetes

Bidang pertanian saat ini menghasilkan perkembangan bioteknologi molekular yang pesat, yang dapat menawarkan cara yang lebih murah daripada pembuatan vaksin dan obat tradisional melalui pabrik. Para ilmuwan telah menemukan tembakau yang menyehatkan setelah memodifikasi faktor genetiknya. Tembakau ini dapat digunakan untuk mengobati diabetes tipe 1. Peneliti Eropa mengatakan telah menghasilkan tembakau yang mengandung senyawa anti-inflamasi (anti-peradangan) yang disebut interleukin-10 (IL-10) yang dapat membantu pasien diabetes tipe 1 yang masih menggantungkan insulin. Sejumlah perusahaan kimia pertanian, termasuk Bayer dan Syngenta, telah mencari cara untuk membuat kompleks protein dalam tanaman obat-obatan, meskipun membutuhkan proses yang lambat. Pada saat ini, kebanyakan obat-obatan dan vaksin diproduksi melalui kultur sel dan kultur jaringan. Namun, Mario Pezzotti dari Universitas Verona, yang memimpin studi tentang tembakau yang diterbitkan dalam jurnal BMC Biotechnology, percaya bahwa tembakau tumbuh lebih efisien semenjak tanaman dunia memiliki biaya rendah untuk menghasilkan protein obat. Berbagai jenis tanaman telah dipelajari oleh sejumlah ilmuwan di seluruh dunia, tetapi tembakau merupakan tanaman yang paling digemari dalam hal riset. “Tembakau adalah tanaman yang fantastis karena mudah mentransformasi genetik dan dengan mudah dapat mempelajari seluruh tanaman dari satu sel,” ungkap Pezzotti. Kelompoknya bekerja dan menaruh minat terhadap tembakau raksasa, yaitu Philip Morris, yang mendukung konferensi tanaman berbasis obat di Verona pada bulan Juni. Pezzotti dan koleganya – yang menerima dana untuk penelitiannya dari Uni Eropa – sekarang berencana untuk megujicobakan tanaman tersebut ke tikus yang memiliki penyakit autoimmune untuk mengetahui responnya. Selanjutnya, mereka ingin menguji apakah pengulangan dosis kecil dapat membantu mencegah penyakit kencing manis pada orang, ketika diberikan bersamaan dengan senyawa lain yaitu glutamic acid decarboxylase (GAD65), yang juga telah diproduksi di tanaman tembakau. Diamyd, perusahaan bioteknologi di Swedia sudah menguji secara konvensional vaksin GAD65 terhadap penderita diabetes dalam masa uji coba klinis. Bidang pertanian molekuler belum menghasilkan produk komersial pertama, walaupun Israel Protalix BioTherapeutics telah melakukan uji klinis lanjutan pada enzim untuk pengobatan penyakit Gaucher yang dihasilkan melalui kultur sel wortel. Protalix rencana untuk mengirimkan obatnya untuk persetujuan dari Amerika Serikat dan Israel.

Rabu, 07 Desember 2011

Sel-sel yang digunakan dalam praktek


Ditulis oleh Ramadhan wahyu

a. Baterai timbal

Nilai sel terletak pada kegunaannya. Di anara berbagai sel, sel timbal (aki) telah digunakan sejak 1915. Berkat baterai ini, mobil dapat mencapai mobilitasnya, dan akibatnya menjadi alat transportasi terpenting saat ini. Baterai timbal dapat bertahan kondisi yang ekstrim (temperatur yang bervariasi, shock mekanik akibat jalan yang rusak, dsb) dan dapat digunakan secara kontinyu beberapa tahun.
Dalam baterai timbal, elektroda negatif adalah logam timbal dan elektroda positifnya adala timbal yang dilapisi timbal oksida, dan kedua elektroda dicelupkan dalam asam sulfat, larutan elektrolitnya. Reaksi elektrodanya adalah sebagai berikut:
Reaksi elektroda baterai timbal
Elektroda negatif: Pb + HSO4 – –> PbSO4 + H+ +2e-(10.24)
Elektroda positif: PbO2 + HSO4 – + 3H+ +2e- –> PbSO4 + 2H2O(10.25)
Reaksi total: Pb(s) + PbO2(s) + 2H+(aq) + 2HSO4 -(aq) –> 2PbSO4(s) + 2H2O(l)(10.26)
Potensial satu sel sekitar 2 V, dan dalam praktek, enam sel dihubungkan dengan seri untuk mendapatkan potensial 12 V. Saat discas, asam sulfat akan dikonsumsi dan kerapatannya akan berkurang dari nilai awal 1,28 g cm-3. Jadi, dengan mengukur kerapatan larutan elektrolit, kondisi sel dapat dimonitor.
Dalam prakteknya, sebelum penurunan kerapatan larutan elektrolitnya terlalu besar, arus listrik diberikan yang akan membalik arah reaksi. Proses ini disebut mencas. Sel yang dapat dicas disebut sel reversibel dan yang tidak dapat dicas (seperti sel kering) disebut sel ireversibel.
Selama dicas, timbal sulfat akan terdekomposisi menjadi timbal dan timbal oksida, dan asam sulfat yang dikonsumsi akan dihasilkan kembali. Air yang terbentuk akan digunakan kembali. Namun, air cenderung menguap, dan reaksi samping, elektrolisis air, yang pasti menyertai, dan dengan demikian penting untuk menambahkan air terdistilasi ke dalam baterai timbal. Baru-baru ini jenis baru elektroda yang terbuta dari paduan timbal dan kalsium, yang dapat mencegah elektrolisis air telah dikembangkan. Baterai modern dengan jenis elektroda ini adalah sistem tertutup dan disebut dengan baterai penyimpan tertutup yang tidak memerlukan penambahan air.

b. Sel lain

Sel Leclanché ditemukan oleh insinyur Perancis Georges Leclanché (1839-1882) lebih dari seratus tahun yang lalu. Berbagai usaha peningkatan telah dilakukan sejak itu, tetapi, yang mengejutkan adalah desain awal tetap dipertahankan, yakni sel kering mangan.
Sel kering mangan terdiri dari bungkus dalam zink sebagai elektroda negatif, batang karbon (grafit) sebagai elektroda positif dan pasta MnO2 dan NH4Cl yang berperan sebagai larutan elektrolit (Gambar 10.4).

Gambar 10.4 Struktur sel kering mangan. Walaupun digunakan paling meluas, detail reaksi elektrodanya
sampai saat ini belum jelas.
Elektroda negatif: Zn –> Zn2+ + 2e- (10.27)
Elektroda positif: 2MnO2 + H2O + 2e-–> Mn2O3 + 2OH- (10.28)
Potensial sel kering mangan sekitar 1,5 V. Dalam sel kering alkali, padatan KOH atau NaOH digunakan sebagai ganti NH4Cl. Reaksi elektrodanya adalah.
Elektroda negatif: Zn + 2OH-–> ZnO + H2O + 2e- (10.29)
Elektroda positif: 2MnO2 + H2O + 2e-–> Mn2O3 + 2OH- (10.30)
Umur sel kering mangan diperpendek oleh korosi zink akibat keasaman NH4Cl. Sel kering alkali bebas masalah ini karena di dalamnya bersifat basa. Jadi umur sel kering alkali lebih panjang.
Mirip dengan baterai timbal, sel nikel-kadmium juga reversibel. Lebih lanjut, dimungkinkan untuk membuat sel nikel-kadmium lebih kecil dan lebih ringan daripada sel timbal. Jadi sel ini digunakan sebagai catu daya alat-alat portabel. Reaksi elektrodanya adalah
Elektroda negatif: Cd + 2OH-–> Cd(OH)2 + 2e- (10.31)
Elektroda positif: NiO2 + 2H2O + 2e-–> Ni(OH)2 + 2OH- (10.32)

c. Sel Bahan Bakar

Desaian sel bahan bakar sedemikian sehingga reaktannya secara kontinyu diberikan ke sel. Sel bahan bakar digunakan dalam proyek Apollo menggunakan kalor pembentukan air dari hidrogen dan oksigen. Biasanya kalor pembentukan dibuang sebagai panas. Dalam sel bahan bakr energi termal diubah menjadi energi listrik. Reaksi elektrodanya adalah:
Elektroda negatif: 2H2 + 4OH-–> 4H2O + 4e- (10.33)
Elektroda positif: O2 + 2H2O + 4e-–> 4OH- (10.34)
Reaksi total: 2H2 + O2 –> 2H2O (10.35)
Struktur sel bahan bakar ditunjukkan di Gambar 10.5.

Gambar 10.5 Struktur sel bahan bakar. Kalor pembakaran yang dihasilkan dari reaksi oksigen dan hidrogen diubah menjadi energi listrik.
Walaupun sejumlah besar tenaga dan dana telah dipompakan ke proyek ini, sampai saat ini el bahan bakar yang ekonomis belum dapat dibuat. Namun, di masa depan, besar kemungkinan sel bahan bakar akan digunakan praktis bila dan hanya bila persediaan hidrogen yang stabil dan murah dapat direalisasikan. Studi di arah ini kini sedang digalakkan.

Lahirnya konsep sintesis


Ditulis oleh Ramadhan wahyu
Kimia memiliki banyak aspek, tetapi ada tiga daerah umum: studi struktur material, studi reaksi material, dan sintesis material. Dulunya dianggap bahwa sintesis lebih dan tidak terlalu teoritis empiris bila dibandingkan dengan studi struktur dan reaksi. Namun, dengan berkembangnya struktur dan reaksi, sintesis juga perlahan menjadi lebih berlandaskan teori dan tersistematisasi. Di bab ini kita akan secara sekilas melihat perkembangan terbaru sintesis modern. Bab ini diharapkan dapat memberikan pengenalan tentang peran penting sintesis dalam kimia modern.
Salah satu tujuan utama kimia adalah menciptakan material penting, atau sintesis material. Dari zaman alkemi, tujuan ini adalah tujuan terpenting yang akan dicapai. Tidak mudah untuk mencapai tujuan ini. Alkemi menyumbangkan karyanya pada lahirnya kimia modern dengan berbagi teknik eksperimen dan alat yang dikembangkannya. Teknik semacam refluks dan distilasi adalah prestasi dari kerja alkemi. Namun bagi alkemi prestasi ini bukan yang mereka cari. Mreka tidak pernah mencapai tujuan utama yang mereka canangkan mensintesis emas, walaupun beberapa mereka melaporkan kesuksesan itu.
Alasan kegagalannya jelas. Kerja mereka berdasarkan atas hipotesis yang salah: teori empat unsur Aristoteles (Bab 1). Target mereka, emas, adalah unsur, tetapi mereka menganggap sejenis senyawa dan menganggap senyawa yang mereka cari dapat diperoleh dengan mencampurkan empat unsur dalam proporsi yang tepat.
Konsep sintesis modern lahir setelah teori atom lahir dan struktur molekul dielusidasi berdasarkan teori atom. Situasi semacam ini akhirnya dicapai di pertengahan abad 19. Teori valensi Kekulé dan Couper diusulkan sekitar tahun 1858. Tidak semua kimiawan pada waktu itu siap menggunakan teori valensi Kekulé , yang dicirikan dengan penggunaan ikatan antar atom. Konsep valensi masih kabur, dan beberapa kimiawan menganggap valensi tidak lebih dari proporsi berbagai jenis atom dalam molekul.
Kimiawan Rusia Aleksandr Mikhailovich Butlerov (1828-1886) dengan semangat mendukung teori Kekulé-Couper dan mendeklarasikan bahwa satu dan hanya satu rumus kimia yang berkaitan dengan satu senyawa dan atom-atom dalam molekul diikat satu sama lain sesuai dengan teori ikatan valensi, serta menolak asumsi umum bahwa atom tersusun secara acak dalam molekul.
Menurutnya, valensi bukan hanya ukuran proporsi atom dalam molekul, valensi juga mendefinisikan pola ikatan antar atom dalam molekul. Ialah yang pertama menggunakan istilah struktur kimia di tahun 1861.
Menurut teorinya, akan ada isomer bila terdapat dua atau lebih cara atom-atom berikatan untuk satu rumus rasional. Di sekitar waktu itu, kimiawab Jerman, Adolph Wilhelm Hermann Kolbe (1818-1884) berhasl mensintesis isopropil alkohol (CH3)2CHOH dan Butlerov sendiri berhasil mensitesis t-butil alkohol (CH3)3COH. Keberhasilan ini membuktikan adanya alkohol primer dan tersier dan kemudian mengukuhkan konsep struktur kimia.
Kimiawan Perancis Michel Eugène Chevreul (1786-1889), seorang kontempori, menemukan bahwa lemak adalah senyawa asam lemah (asam karboksilat alifatik) dan gliserin, dan zat mirip lemak dapat diperoleh dari reaksi antara asam lemak dan gliserin. Berthelot menulsi buku teks “Kimia Organik” tahun 1860 yang didalamnya ia menggunakan istilah “sintesis”. Ia mendeklarasikan secara prinsip seyawa organik apapun dapat disintesis dari karbon, hidrogen, oksigen dan nitrogen.
Jadi, filosofi dasar kimia sintesis dikukuhkan di pertengahan abad 19. Secara praktis sintesis bukan berarti mudah. Di tahun 1856, seorang anak muda Inggris William Henry Perkin (1838-1907), yang juga asisten August Wilhelm von Hofmann (1818-1892) , yang waktu itu di London karena diminta membuat sistem untuk pendidikan kimia, berusaha mensintesis kuinin. Kuinin diketahui sebagai obat khusus untuk malaria.
Di waktu itu, belum ada metoda sintesis senyawa serumit kuinin dari senyawa organik sederhana. Perkin memiliki ide bahwa kuinin mungkin dapat dihasilkan dari oksidasi aliltoluidin, yang rumus rasionalnya mirip dengan kuinin. Fakta sebenarnya hal ini tidak mungkin, dan memang usaha sintesisnya gagal. Alih-alih mendapatkan kuinin, Perkin mendapatkan pewarna yang cantik, yang disebut Mauve atau Mauvein, yang kemudian menjadi pewarna sintetis pertama yang digunakan untuk keperluan praktis. Sukes tak terencana ini menumbuhkan industri kimia dengan cepat. Namun, kesukaran sintesis organik tetap tak terpecahkan.

Gambar 11.1 Keberuntungan besar! Dengan oksidasi aliltoluidin Perkin mendapatkan,
Bukan kuinin yang ia cari, tetapi pewarna buatan, Mauve.
Baru 88 tahun kemudian di tahun 1944 kimiawan Amerika Robert Burns Woodward (1917-1979) dapat mensintesis kuinin dengan pendekatan sistematis.

Elektrolisis


Ditulis oleh Ramadhan wahyu

a. Sel dan elektrolisis

Dalam sel, reaksi oksidasi reduksi berlangsung dengan spontan, dan energi kimia yang menyertai reaksi kimia diubah menjadi energi listrik. Bila potensial diberikan pada sel dalam arah kebalikan dengan arah potensial sel, reaksi sel yang berkaitan dengan negatif potensial sel akan diinduksi. Dengan kata lain, reaksi yang tidak berlangsung spontan kini diinduksi dengan energi listrik. Proses ini disebut elektrolisis. Pengecasan baterai timbal adalah contoh elektrolisis.
Reaksi total sel Daniell adalah
Zn + Cu2+(aq) –> Zn2+(aq) + Cu (10.36)
Andaikan potensial lebih tinggi dari 1,1 V diberikan pada sel dengan arah kebalikan dari potensial yang dihasilkan sel, reaksi sebaliknya akan berlangsung. Jadi, zink akan mengendap dan tembaga akan mulai larut.
Zn2+(aq) + Cu –> Zn + Cu2+(aq) (10.37)
Gambar 10.6 menunjukkan representasi skematik reaksi kimia yang terjadi bila potensial balik diberikan pada sel Daniell. Bandingkan dengan Gambar 10.2.

Gambar 10.6 Electrolisis. Reaksi kebalikan dengan yang terjadi pada sel Daniell akan berlangsung. Zink mengendap sementara tembaga akan melarut.

b. Hukum elektrolisis Faraday

Di awal abad ke-19, Faraday menyelidiki hubungan antara jumlah listrik yang mengalir dalam sel dan kuantitas kimia yang berubah di elektroda saat elektrolisis. Ia merangkumkan hasil pengamatannya dalam dua hukum di tahun 1833.
Hukum elektrolisis Faraday
  1. Jumlah zat yang dihasilkan di elektroda sebanding dengan jumlah arus listrik yang melalui sel.
  2. Bila sejumlah tertentu arus listrik melalui sel, jumlah mol zat yang berubah di elektroda adalah konstan tidak bergantung jenis zat. Misalnya, kuantitas listrik yang diperlukan untuk mengendapkan 1 mol logam monovalen adalah 96 485 C(Coulomb) tidak bergantung pada jenis logamnya.
C (Coulomb) adalah satuan muatan listrik, dan 1 C adalah muatan yang dihasilkan bila arus 1 A (Ampere) mengalir selama 1 s. Tetapan fundamental listrik adalah konstanta Faraday F, 9,65 x104 C, yang didefinisikan sebgai kuantitas listrik yang dibawa oleh 1 mol elektron. Dimungkinkan untuk menghitung kuantitas mol perubahan kimia yang disebabkan oleh aliran arus listrik yang tetap mengalir untuk rentang waktu tertentu.
Contoh soal 10.7 hukum elektrolisis Faraday
Arus sebesar 0,200 A mengalir melalui potensiometer yang dihubungkan secara seri selama 20 menit. Satu potensiometer memiliki elektrode Cu/CuSO4 dan satunya adalah elektrode Pt/ H2SO4 encer. Anggap Ar Cu = 63,5. Tentukan
  1. jumlah Cu yang mengendap di potensiometer pertama.
  2. Volume hidrogen pada S. T. P. yang dihasilkan di potensiometer kedua.
Jawab
Jumlah muatan listrik yang lewat adalah 0,200 x 20 x 60 = 240, 0 C.
  1. Reaksi yang terlibat adalah Cu2+ + 2e-–> Cu, maka massa (w) Cu yang diendapkan adalah. w (g) = [63,5 (g mol-1)/2] x [240,0 (C)/96500(C mol-1)] = 0,079 g
  2. Karena reaksinya 2H+ + 2e-–> H2, volume hidrogen yang dihasilkan v (cm3) adalah.
    v (cm3) = [22400 (cm3mol-1)/2] x [240,0(C)/96500(C mol-1)] = 27,85 cm3

c. Elektrolisis penting di industri

Elektrolisis yang pertama dicoba adalah elektrolisis air (1800). Davy segera mengikuti dan dengan sukses mengisolasi logam alkali dan alkali tanah. Bahkan hingga kini elektrolisis digunakan untuk menghasilkan berbagai logam. Elektrolisis khususnya bermanfaat untuk produksi logam dengan kecenderungan ionisasi tinggi (misalnya aluminum). Produksi aluminum di industri dengan elektrolisis dicapai tahun 1886 secara independen oleh penemu Amerika Charles Martin Hall (1863-1914) dan penemu Perancis Paul Louis Toussaint Héroult (1863-1914) pada waktu yang sama. Sukses elektrolisis ini karena penggunaan lelehan Na3AlF6 sebagai pelarut bijih (aluminum oksida; alumina Al2O3).
Sebagai syarat berlangsungnya elektrolisis, ion harus dapat bermigrasi ke elektroda. Salah satu cara yang paling jelas agar ion mempunyai mobilitas adalah dengan menggunakan larutan dalam air. Namun, dalam kasus elektrolisis alumina, larutan dalam air jelas tidak tepat sebab air lebih mudah direduksi daripada ion aluminum sebagaimana ditunjukkan di bawah ini.
Al3+ + 3e-–> Al potensial elektroda normal = -1,662 V (10.38)
2H2O +2e-–> H2 + 2OH- potensial elektroda normal = -0,828 V (10.39)
Metoda lain adalah dengan menggunakan lelehan garam. Masalahnya Al2O3 meleleh pada suhu sangat tinggi 2050 °C, dan elektrolisis pada suhu setinggi ini jelas tidak realistik. Namun, titik leleh campuran Al2O3 dan Na3AlF6 adalah sekitar 1000 °C, dan suhu ini mudah dicapai. Prosedur detailnya adalah: bijih aluminum, bauksit mengandung berbagai oksida logam sebagai pengotor. Bijih ini diolah dengan alkali, dan hanya oksida aluminum yang amfoter yang larut. Bahan yang tak larut disaring, dan karbon dioksida dialirkan ke filtratnya untuk menghasilkan hidrolisis garamnya. Alumina akan diendapkan.
Al2O3(s) + 2OH-(aq)–> 2AlO2- (aq) + H2O(l) (10.40)
2CO2 + 2AlO2 -(aq) + (n+1)H2O(l) –> 2HCO3- (aq) + Al2O3·nH2O(s) (10.41)
Alumina yang didapatkan dicampur dengan Na3AlF6 dan kemudian garam lelehnya dielektrolisis. Reaksi dalam sel elektrolisi rumit. Kemungkinan besar awalnya alumina bereaksi dengan Na3AlF6 dan kemudian reaksi elektrolisis berlangsung.
Al2O3 + 4AlF63-–> 3Al2OF62- + 6F- (10.42)
Reaksi elektrodanya adalah sebagai berikut.
Elektroda negatif: 2Al2OF62- + 12F- + C –> 4AlF63- + CO2 + 4e- (10.43)
Elektroda positif: AlF63- + 3e-–> Al + 6F- (10.44)
Reaksi total: 2Al2O3 + 3C –> 4Al + 3CO2 (10.45) Kemurnian aluminum yang didapatkan dengan prosedur ini kira-kira 99,55 %. Aluminum digunakan dalam kemurnian ini atau sebagai paduan dengan logam lain. Sifat aluminum sangat baik dan, selain itu, harganya juga tidak terlalu mahal. Namun, harus diingat bahwa produksi aluminum membutuhkan listrik dalam jumlah sangat besar.
Latihan
10.1 Bilangan oksidasi
Tentukan bilangan oksidasi setiap unsur yang ditandai dengan hurugf tebal dalam senyawa berikut.
(a) HBr (b) LiH (c) CCl4 (d) CO (e) ClO- (f) Cl2O7 (g) H2O2 (h) CrO3 (i) CrO42- (j) Cr2O72-
10.1 Jawab
(a) +1 (b) -1 (c) +4 (d) +2 (e) +1 (f) +7 (g) -1 (h) +6 (i) +6 (j) +6
10.2 Reaksi oksidasi reduksi
Untuk tiap reaksi berikut, tentukan bilangan oksidasi atom berhuruf tebal. Tentukan oksidan dan reduktan dan tentukan perubahan bilangan oksidasinya.
(a) PbO2 + 4H+ + Sn2+ –> Pb2+ + Sn4+ + 2H2O
(b) 5As2O3 + 4MnO4- + 12H+ –> 5As2O5 + 4Mn2+ + 6H2O
10.2 Jawab
(a) Pb: +4 –> +2 direduksi. Sn: +2 –> +4 dioksidasi
(b) As: +3 –> +5 dioksidasi. Mn: +7 –> +2 direduksi
10.3 Titrasi oksidasi reduksi
0,2756 g kawat besi dilarutkan dalam asam sedemikian sehingga Fe3+ direduksi menjadi Fe2+. Larutan kemudian dititrasi dengan K2Cr2O7 0,0200 mol.dm-3 dan diperlukan 40,8 cm3 larutan oksidan untuk mencapai titik akhir. Tentukan kemurnian (%) besinya.
10.3 Jawab
99,5 %
10.4 Potensial sel
Tentukan potensial sel (pada 25°C) yang reaksi totalnya diberikan dalam persamaan berikut. Manakah yang akan merupakan sel yang efektif?
  1. Mg + 2H+ –> Mg2+ + H2
  2. Cu2+ + 2Ag –> Cu + 2Ag+
  3. 2Zn2+ + 4OH-–> 2Zn + O2 + 2H2O
10.4 Jawab
  1. Mg –> Mg2+ +2e-, +2,37 V. 2H+ + 2e-–> H2, 0,00 V; potensial sel: +2,37 V,efektif.
  2. Cu2+ + 2e-–> Cu, 0,337 V. Ag–> Ag+ + e-, -0,799 V, potensial sel: -0,46 V,tidak efektif.
  3. Zn2+ + 2e-–> Zn, -0,763 V. 4OH-–> 4e- + O2 + 2H2O, -0.401 V potensial sel: -1,16 V, tidak efektif.
10.5 Persamaan Nernst
Hitung potensial sel (pada 25°C) yang reaksi selnya diberikan di bawah ini.
Cd + Pb2+ –> Cd2+ + Pb
[Cd2+] = 0,010 mol dm-3; [Pb2+] = 0,100 mol dm-3
10.5 Jawab
0,30 V
10.6 Hukum Faraday
Bismut dihasilkan dengan elektrolisis bijih sesuai dengan persamaan berikut. 5,60 A arus listrik dialirkan selama 28,3 menit dalam larutan yang mengandung BiO+. Hitung massa bismut yang didapatkan.
BiO+ + 2H+ + 3e- –> Bi + H2O
10.6 Jawab
6,86 g

Sintesis organik


Ditulis oleh Ramadhan wahyu
Dibandingkan dengan sintesis senyawa anorganik, sintesis senyawa organik jauh lebih sukar. Kelahiran kimia organik dinisbahkan pada sintesis urea CO(NH2)2 (suatu senyawa organik umum) dengan memanaskan amonium sianat (senyawa anorganik), pertama dilakukan oleh kimiawan Friedrich Wöhler (1800-1882). Hanya akhir-akhir ini saja desain dan sintesis senyawa yang diinginkan mungkin dilakukan.
Reaksi yang digunakan dalam sintesis organik dapat digolongkan menjadi dua golongan;
  1. pembentukan ikatan karbon-karbon
  2. pengubahan gugus fungsi
Sebagian besar reaksi yang Anda pelajari di sekolah menengah adalah konversi gugus fungsi, seperti yang ditunjukkan di bawah ini.

Bagi bidang sintesis organik pembentukan ikatan C-C dan pengubahan gugus fungsi seperti roda kendaraan. Tidak pantas menanyakan mana yang lebih penting. Berbagai reaksi pembentukan ikatan C-C telah dilaporkan. Berdasarkan gaya dorong reaksinya, reaksi ini dapat digolongkan atas tiga jenis, kondensasi aldol, reaksi Grignard dan reaksi Diels-Alder. Di sini dua yang terakhir yang akan dibahas.

a. Reaksi Grignard

Reaksi Grignard ditemukan oleh kimiawan Perancis Auguste Victor Grignard (1871-1935) di tahun 1901. Tahap awal reaksi adalah reaksi pembentukan metilmagnesium iodida, reagen Grignard, dari reaksi antara alkil halida (metil iodida dalam contoh di bawah ini) dan magnesium dalam dietil eter kering.
CH3I + Mg –> CH3MgI (11.17)
Anda pasti melihat bahwa magnisium terikat langsung dengan karbon. Senyawa semacam ini yang sering disebut sebagai reagen Grignard dengan ikatan C-logam dimasukkan dalam golongan senyawa organologam. Ikatan C-logam sangat labil dan mudah menghasilkan kabanion seperti CH3- setelah putusnya ikatan logam-karbon. Ion karbanion cenderung menyerang atom karbom bermuatan positif. Telah dikenal luas bahwa atom karbon gugus aldehida atau gugus keton bermuatan positif karena berikatan dengan atom oksigen yang elektronegatif. Atom karbon ini akan diserang oleh karbanion menghasilkan adduct yang akan menghasilkan alkohol sekunder dari aldehida atau alkohol terseir dari keton setelah hidrolisis.
C6H5CHO + CH3MgI –> C6H5CH(CH3)OMgI (11.18)
benzaldehida
C6H5CH(CH3)OMgI + HCl –> C6H5CH(CH3)OH + MgClI (11.19)
1-fenilletanol
C6H5COC2H5 + CH3MgI –> C6H5CH(CH3)(C2H5) OMgI (11.20)
propiofenon
C6H5CH(CH3)(C2H5)OMgI + HCl –> C6H5CH(CH3)(C2H5)OH + MgClI (11.21)
2-fenil-2-butanol
Reaksi Grignard adalah contoh reaksi senyawa oragnologam. Karena berbagai jenis aldehida dan keton mudah didapat, berbagai senyawa organik dapat disintesis dengan bantuan reaksi Grignard.
Contoh Soal 11.1 Reaksi Grignard
Dalam teks disebutkan kombinasi C6H5COC2H5 dan CH3MgI digunakan untuk mensintesis 2fenil-2-butanol C6H5CH(CH3)(C2H5)OH. Indikasikan kombinasi lain yang dapat digunakan untuk menghasilkan senyawa yang sama.
Jawab
Tiga jenis gugus alkil ada dalam produk akhirnya. Gugus alkil ini mungkin merupakan bagian bahan awal. Jadi, selain kombinasi C6H5COC2H5 dan CH3MgI, dua kemungkinan kombinasi lain juga dapat diterima ??
  1. acetofenon C6H5COCH3 dan etilmagnesium iodida C2H5MgI
  2. etilmetilketon CH3COC2H5 dan fenilmagnesium iodida C6H5MgI

b. Reaksi Diels-Alder

Gaya dorong reaksi Grignard adalah tarik-menarik antara dua muatan listrik yang berbeda antara dua atom karbon. Reaksi semacam ini disebut dengan reaksi ionik atau reaksi polar. Ada pula jenis lain reaksi organik. Salah satunyaa adalah reaksi radikal, yang gaya dorongnya adalah radikal reaktif yang dihasilkan dalam reaksi. Bila dihasilkan radikal fenil, radikal ini akan menyerang molekul benzene akan menghasilkan bifenil.
C6H5 + C6H6 –> C6H5- C6H5 + H 11.22)
Sebagian besar reaksi organik diklasifikasikan dalam reaksi ionik dan reaksi radikal. Di pertengahan pertama abad 20, kemudian muncul, golongan lain reaksi yang tidak dapat dimasukkan dalam dua golongan tadi. Salah satu yang khas adalah reaksi Diels-Alder yang ditemukan di tahun 1928 oleh dua kimiawan Jerman Paul Hermann Diels (1876-1954) dan Kurt Alder (1902-1958).
Dalam reaksi ini butadiena yang secara muatan netral bereaksi dengan anhidrida maleat yang juga netral menghasilkan produk siklik.

Menariknya, ternyata kemudaian banyak contoh reaksi semacam ini: diena (senyawa dengan ikatan rangkap) dan alkena diaktivasi oleh gugus karbonil dan bereaksi menghasilkan produk siklik. Harus ditambahkan bahwa tidak ada reaksi antara dua molekul butadiena atau dua anhidrida maleat.
Di tahun 1965, dua kimiawan Amerika, Woodward dan Roald Hoffmann (1935-) menjelaskan bahwa jenis reaksi ini bukan reaksi ionik maupun reaksi radikal, tetapi reaksi yang dihasilkan oleh tumpang tindih orbital molekul dua reaktan. Interpretas ini memungkinakan elusidasi mekanisme reaksi yang sebelumnya belum dikenal.
Menurut mereka, interaksi yang disukai akan ada bila salah satu reaktan (misalnya butadiena) memiliki empat elektron π dan reaktan lain (misalnya anhidrida maleat) memiliki elektron πmenghasilkan produk siklik. Dapat ditunjukkan bahwa orbital molekul yang terisi dengan energi tertinggi [highest occupied molecular orbitals (HOMO)] dan orbital molekul tak terisi terendah [lowest unoccupied molecular orbitals (LUMO)] yang mngatur jalannya reaksi. Pada waktu yang sama Kenichi Fukui (1918-1999) menamakan orbital-orbital ini orbital frontir (frontier orbital).
Pentingnya reaksi yang dibahas ini jelas dengan diberikannya hadiah Nobel untuk Grignard, Diels, Adler, Woodward, Hoffmann dan Fukui.

Selingan- Klimaks Sintesis Organik

Dari awal kimia organik, sintesis organik dapat dianggap sebagai inti kimia organik.
Kimia organik dapat dikatakan mencapai puncaknya sekiatar pertengahan abad 20 ketika Woodward paling aktif dalam bidang ini. Woodward berhasil mensintesis kuinin (1944), striknin (1954), khlorofil (1960) dan sefalosporin (1966). Ia mendapatkan anugerah Nobel tahun 1965.
Robert Burns Woodward (1017-1979)
Yang paling penting dari prestasi Woodward adala keberhasilan sintesis vitamin B12 yang diilakukannya dengan kerjasama dengan kimiawan Swiss Albert Eschenmoser (1925-). Kedua kelompok riset ini masing-masing separuh molekulnya. Setelah spesies targetnya disintesis, keduanya digabung menghasilkan vitamin B12.

c. Sintesis asime trik

Sebagaimana telah dibahas di Bab 4, banyak senyawa organik alami, semacam asam amino, gula dan steroid, memiliki atom karbon asimetrik. Kuinin, yang dikenalkan di bab ini juga mengandung atom karbon asimetrik. Atom karbon asimetrik memainkan peran dalam aktivitas fisiologis semua senyawa ini. Harus ditambahkan bahwa dalam banyak kasus hanya satu dari pasangan enansiomer ini bermanfaat bagi manusia. Dengan demikian, apakah kita dapat mencapai sintesis asimetrik, seni sintesis selektif satu dari pasangan enansiomer, adalah isu yang sangat penting.
Dalam contoh-contoh sintesis asimetrik yang berhasil, senyawa dengan atom karbon asimetrik, seperti terpen, asam amino dan gula, dipilih sebagai salah satu reaktan. Atom karbon asimetrik mungkin akan lebih menyukai pembentukan salah satu enansiomer. Pembentukan selektif salah satu isomer mungkin dipengaruhi oleh efek sterik. Dalam kasus tertentu, laju reaksi mungkin berbeda antara kedua stereoisomer. Dalam kasus lain, kesetimbangan antara dua produk isomer akan bergeser ke salah satu sisi kesetimbangan. Sintesis selektif isomer yang penting akan sangat penting dan topik yang paling banyak dilakukan di kimia organik abad 21.
Terdapat pula pendekatan yang lebih sukar yakni tidak digunakannya senyawa dengan atom karbon asimetrik. Bila sintesis asimetrik ini dapat direalisasikan, kita dapat mengatakan bahwa kimia telah dapat meniru alam!
Latihan
11.1 Proses Solvay
Jawablah pertanyaan tentang proses Solvay:
  1. Tuliskan persamaan reaksi dari bahan awal menjadi natrium karbonat.
  2. Beri nama gas yang digunakan secara berulang dalam proses ini.
  3. Hitung massa natrium karbonat yang dapat diperoleh dari 1 ton natrium khlorida.
Jawab.
(1) lihat teks. (2) CO2, NH3 (3) 0,906 ton
11.2 Reaksi Grignard
Anda diharapkan mensintesis alkohol C3H7C(CH3)(C2H5)OH dengan reaksi Grignard. Tuliskan semua kombinasi yang mungkin (aldehida atau keton) dan reagen Grignard (yang didapatkan dari bromida).
Jawab:
CH3COC2H5 dan C3H7MgBr, C2H5COC3H7 dan CH3MgBr, CH3COC3H7 dan C2H5MgBr

Material murni dan campuran


Ditulis oleh Ramadhan wahyu
Dalam banyak kasus kita tidak dapat menggunakan material tanpa pemurnian baik material itu dari alam (misalnya, minyak mentah) atau yang disintesis di laboratorium. Pemisahan atau pemurnian dengan metoda tertentu perlu dilakukan. Dalam buku ini telah dibahas sintesis material telah dibahas, maka bab ini akan membahas pemurnian. Dalam praktek, sintesis dan pemurnian tidak dapat dipisahkan satu sama lain. Kita akan melihat bahwa ketika metoda pemisahan-pemurnian baru dikembangkan, kimia akan mendapat kemajuan yang besar.
Material dapat diklasifikasikan menjadi dua kelompok, murni dan campuran. Pernyataan ini Anda telah dapatkan di halaman pertama buku SMA, dan nampak sebagai sesuatu yang jelas. Namun, dalam kenyataan ini bukanlah hal sederhana. Pertama, sebagain besar material di sekitar kita adalah campuran, dan sebagian besar adalah campuran multikomponen. Udara adalah contoh yang baik. Komponen utama udara adalah nitrogen dan oksigen. Jadi udara adalah campuran, bukan material murni. Lebih lanjut, akan diperlihatkan dengan analisis yang rinci bahwa udara mengandung sejumlah kecil uap air, karbon dioksida dan beberapa gas dalam jumlah kecil.
Dapat dinyatakan bahwa di dunia ini tidak ada material yang benar-benar murni. Anda mungkin mengira bahwa air terdistilasi adalah air yang murni sempurna. Anda terlalu optimistik! Sejumlah tertentu karbon dioksida masih terlarut dalam air ini. Selain itu sejumlah sangat kecil ion natrium mungkin masih ada, ion ini mungkin berasal dari dinding alat distilasi. Diperlukan cara tertentu untuk menghilangkan ion ini.
Mensintesis material tertentu atau mengekstraksi material dari alam memiliki tujuan teknologis tertentu. Dalam banyak kasus material murni diperlukan. Jadi seni sintesis dan pemurnian adalah dua sisi dari mata uang yang sama.

Analisis unsur


Ditulis oleh Ramadhan wahyu
Tulisan yang diberikan di bagian selingan berikut menyarankan bahwa sukar untuk mendefinisikan “bahan yang murni sempurna”. Cara yang lebih praktis adalah mendefinisikan selisih dari murni sempurna. Harus ditambahkan bahwa, tanpa metoda yang tepat untuk memperkirakan kemurnian, kita tidak dapat memutuskan keefektifan metoda pemurnian tertentu. Singkatnya, tanpa itu tidak mungkin diputuskan apakah senyawa tertentu murni atau tidak.
Ambil contoh senyawa organik. Sampai pertengahan abad 20, kriteria kemurnian senyawa organik didasarkan atas beberapa percobaan: analisis unsur dan pengukuran sifat fisik seperti titik leleh dan titik didih. Hasil analisis unsur harus sama dengan nilai hasil perhitungan berdasarkan rumus molekul, dan konstanta fisik harus juaga sama dengan nilai yang dilaporkan di literatur (kriteria ini hanya dapat digunakan untuk senyawa yang telah diketahui).
Analisis unsur senyawa organik dilakukan dengan cara sebagai berikut. Sejumlah massa tertentu sampel dibakar dan karbon dioksida dan air yang dihasilkan dijebak dengan absorben yang tepat, dan peningkatan massa absorben kemudian ditentukan. Peningkatan massa absorben diakibatkan oleh karbon dioksida dan air yang diserap. Dari nilai ini jumlah karbon dan hidrogen dalam sampel dapat ditentukan. Metoda pembakaran telah dikenal sejak dulu. Metoda ini telah digunakan oleh Lavoisieur dan secara signifikan disempurnakan oleh Liebig. Metoda modern untuk menentukan jumlah karbon dioksida dan air adalah dengan kromatografi gas bukan dengan metoda penimbangan. Namun, prinsipnya tidak berubah sama sekali.
Harus dinyatakan bahwa kemungkinan percobaan mempengaruhi hasil tidak terhindarkan. Pekerjaan menimbang tidak dapat bebas kesalahan (termasuk ketidakakuratan neracanya).

Selingan- Air murni sempurna

Buku teks kimia menyatakan bahwa hasil kali ion air murni adalah 10-14 (mol dm-3))2 pada 25??C. Bila Anda mencoba menentukan hasil kali ion air murni yang diperoleh dari distilasi biasa dengan mengukur hantarannya, Anda akan mendapatkan nilai yang lebih besar dari nilai teroritis ini.
Fisikawan Jerman Friedlich Wilhelm Georg Kohlrausch (1840- 1910) membanting tulang untuk mendapatkan data fisik yang akurat. Ia menyadari bahwa ia harus sangat hati-hati dalam menentukan hantaran listrik untuk mendapatkan data yang sangat akurat.
Ia membuat alat dari kuarsa (bukan gelas!) untuk mencegah kontaminasi dari alat gelas. Dengan mengalirkan nitrogen yang dimurnikan, ia berulang-ulang mendestilasi air. Hantaran air yang didapatkan sangat kecil, dari 1/100 sampai 1/1000 hantran air terdestilasi biasa. Dari nilai hantaran yang ia dapatkan, ia menghitung nilai hasil kali ion air yang nilainya sama dengan nilai hasil teori.
Menjebak karbon dioksida dan air juga merupakan prosedur yang sukar. Kontaminasi oleh karbon dioksida dan air dari udara merupakan sumber kesalahan juga. Mempertimbangkan semua hal ini, biasanya bila perbedaan antara hasil percobaan dan teori kurang dari 0,3%, maka perbedaan itu dapat diterima. Ini merupakan contoh yang baik untuk definisi praktis kemurnian.
Kriteria kemurnian empiris yang lain adalah uji titik-leleh-campuran. Metoda ini didasarkan atas fakta berikut. Bila titik leleh campuran dua padatan dengan titik leleh yang sama ditentukan, titik lelehnya akan menurun bila dua senyawa itu tidak identik. Uji ini dulunya merupan fondasi logis kimia organik dalam perkembangan bidang ini terutama saat menambahkan anggota baru dalam keluarga senyawa. Bila satu dari dua senyawa itu tidak murni, akan diamati penurunan titik leleh.
Masalahnya waktu itu adalah bagaimana kimiawan dapat memperoleh sampel ya ng dapat dianalisis dengan benar dan tidak menunjukkan penurunan titik leleh.

Kromatografi


Ditulis oleh Ramadhan wahyu
Walaupun agak tidak terlalu jelas, kontribusi kromatografi pada perkembangan kimia modern tidak dapat dipandang rendah. Tanpa teknik kromatografi, sintesis senyawa murni (atau hampir murni) akan sangat sukar , dan dalam banyak kasus, hampir tidak mungkin.
Di awal abad ke-20, kimiawan Rusia Mikhail Semënovich Tsvet (1872-1919) menyiapkan kolom yang diisi dengan serbuk kalsium karbonat, dan kedalamnya dituangkan campuran pigmen tanaman yang dilarutkan dalam eter. Secara mengejutkan, pigmen memisahkan dan membentuk lapisan berwarna di sepanjang kolom. Ia menamakan kromatografi pada teknik pemisahan baru ini (1906). Kemudian kimiawan dari Swiss Richard Martin Willstätter (1872-1942) menerapkan teknik ini untuk risetnya yakni khlorofil untuk menunjukkan manfaat teknik ini, dan sejak itu banyak perhatian diberikan pada kromatografi.
Kromatografi adalah teknik untuk memisahkan campuran menjadi komponennya dengan bantuan perbedaan sifat fisik masing-masing komponen. Alat yang digunakan terdiri atas kolom yang di dalamnya diisikan fasa stasioner (padatan atau cairan). Campuran ditambahkan ke kolom dari ujung satu dan campuran akan bergerak dengan bantuan pengemban yang cocok (fasa mobil). Pemisahan dicapai oleh perbedaan laju turun masing-masing komponen dalam kolom, yang ditentukan oleh kekuatan adsorpsi atau koefisien partisi antara fasa mobil dan fasa diam (stationer).
Komponen utama kromatografi adalah fasa stationer dan fasa mobil dan kromatografi dibagi menjadi beberapa jenis bergantung pada jenis fasa mobil dan mekanisme pemisahannya, seperti ditunjukkan di Tabel 12.1
Tabel 12.1 Klasifikasi kromatografi
KriteriaNama
Fasa mobilKromatografi cair, kromatografi gas
Kromatografi adsorpsi, kromatografi partisi
MekanismeKromatografi pertukaran ion
kromatografi gel
Fasa stationerKromatografi kolom, kromatografi lapis tipis,
kromatografi kertas
Beberapa contoh kromatografi yang sering digunakan di laboratorium diberikan di bawah ini.

a. Kromatografi partisi

Prinsip kromatografi partisi dapat dijelaskan dengan hukum partisi yang dapat diterapkan pada sistem multikomponen yang dibahas di bagian sebelumnya. Dalam kromatografi partisi, ekstraksi terjadi berulang dalam satu kali proses. Dalam percobaan, zat terlarut didistribusikan antara fasa stationer dan fasa mobil. Fasa stationer dalam banyak kasus pelarut diadsorbsi pada adsorben dan fasa mobil adalah molekul pelarut yang mengisi ruang antar partikel yang ter adsorbsi.
Contoh khas kromatografi partisi adalah kromatografi kolom yang digunakan luas karena merupakan sangat efisien untuk pemisahan senyawa organik (Gambar 12.3).
Kolomnya (tabung gela) diisi dengan bahan seperti alumina, silika gel atau pati yang dicampur dengan adsorben, dan pastanya diisikan kedalam kolom. Larutan sampel kemudian diisikan kedalam kolom dari atas sehingga sammpel diasorbsi oleh adsorben. Kemudian pelarut (fasa mobil; pembawa) ditambahkan tetes demi tetes dari atas kolom.
Partisi zat terlarut berlangsung di pelarut yang turun ke bawah (fasa mobil) dan pelarut yang teradsorbsi oleh adsorben (fasa stationer). Selama perjalanan turun, zat terlarut akan mengalami proses adsorpsi dan partisi berulang-ulang. Laju penurunan berbeda untuk masing-masing zat terlarut dan bergantung pada koefisien partisi masing-masing zat terlarut. Akhirnya, zat terlarut akan terpisahkan membentuk beberapa lapisan.
Akhirnya, masing-masing lapisan dielusi dengan pelarut yang cocok untuk memberikan spesimen murninya. Nilai R didefinisikan untuk tiap zat etralrut dengan persamaan berikut.
R = (jarak yang ditempuh zat terlarut) / (jarak yang ditempuh pelarut/fasa mobil).

Gambar 12.3 Diagram skematik kromatografi

b. Kromatografi kertas

Mekanisme pemisahan dengan kromatografi kertas prinsipnya sama dengan mekanisme pada kromatografi kolom. Adsorben dalam kromatografi kertas adalah kertas saring, yakni selulosa. Sampel yang akan dianalisis ditotolkan ke ujung kertas yang kemudian digantung dalam wadah. Kemudian dasar kertas saring dicelupkan kedalam pelarut yang mengisi dasar wadah. Fasa mobil (pelarut) dapat saja beragam. Air, etanol, asam asetat atau campuran zat-zat ini dapat digunakan.
Kromatografi kertas diterapkan untuk analisis campuran asam amino dengan sukses besar. Karena asam amino memiliki sifat yang sangat mirip, dan asam-asam amino larut dalam air dan tidak mudah menguap (tidak mungkin didistilasi), pemisahan asam amino adalah masalah paling sukar yang dihadapi kimiawan di akhir abad 19 dan awal abad 20. Jadi penemuan kromatografi kertas merupakan berita sangat baik bagi mereka.
Kimiawan Inggris Richard Laurence Millington Synge (1914-1994) adalah orang pertama yang menggunakan metoda analisis asam amino dengan kromatografi kertas. Saat campuran asam amino menaiki lembaran kertas secara vertikal karena ada fenomena kapiler, partisi asam amino antara fasa mobil dan fasa diam (air) yang teradsorbsi pada selulosa berlangsung berulang-ulang. Ketiak pelarut mencapai ujung atas kertas proses dihentikan. Setiap asam amino bergerak dari titik awal sepanjang jarak tertentu. Dari nilai R, masing-masing asam amino diidentifikasi.
Kromatografi kertas dua-dimensi (2D) menggunakan kertas yang luas bukan lembaran kecil, dan sampelnya diproses secara dua dimensi dengan dua pelarut.

Gambar 12.4 Contoh hasil kromatografi kertas pigmen dari
www.indigo.com/ science-supplies/filterpaper. html

c. Kromatografi gas

Campuran gas dapat dipisahkan dengan kromatografi gas. Fasa stationer dapat berupa padatan (kromatografi gas-padat) atau cairan (kromatografi gas-cair).
Umumnya, untuk kromatografi gas-padat, sejumlah kecil padatan inert misalnya karbon teraktivasi, alumina teraktivasi, silika gel atau saringan molekular diisikan ke dalam tabung logam gulung yang panjang (2-10 m) dan tipis. Fasa mobil adalah gas semacam hidrogen, nitrogen atau argon dan disebut gas pembawa. Pemisahan gas bertitik didih rendah seperti oksigen, karbon monoksida dan karbon dioksida dimungkinkan dengan teknik ini.
Dalam kasus kromatografi gas-cair, ester seperti ftalil dodesilsulfat yang diadsorbsi di permukaan alumina teraktivasi, silika gel atau penyaring molekular, digunakan sebagai fasa diam dan diisikan ke dalam kolom. Campuran senyawa yang mudah menguap dicampur dengan gas pembawa disuntikkan ke dalam kolom, dan setiap senyawa akan dipartisi antara fasa gas (mobil) dan fasa cair (diam) mengikuti hukum partisi. Senyawa yang kurang larut dalam fasa diam akan keluar lebih dahulu.
Metoda ini khususnya sangat baik untuk analisis senyawa organik yang mudah menguap seperti hidrokarbon dan ester. Analisis minyak mentah dan minyak atsiri dalam buah telah dengan sukses dilakukan dengan teknik ini.
Efisiensi pemisahan ditentukan dengan besarnya interaksi antara sampel dan cairannya. Disarankan untuk mencoba fasa cair standar yang diketahui efektif untuk berbagai senyawa. Berdasarkan hasil ini, cairan yang lebih khusus kemudian dapat dipilih. Metoda deteksinya, akan mempengaruhi kesensitifan teknik ini. Metoda yang dipilih akan bergantung apakah tujuannya analisik atau preparatif.

d. HPLC

Akhir-akhir ini, untuk pemurnian (misalnya untuk keperluan sintesis) senyawa organik skala besar, HPLC (high precision liquid chromatography atau high performance liquid chromatography) secara ekstensif digunakan. Bi la zat melarut dengan pelarut yang cocok, zat tersebut dapat dianalisis. Ciri teknik ini adalah penggunaan tekanan tinggi untuk mengirim fasa mobil kedalam kolom. Dengan memberikan tekanan tinggi, laju dan efisiensi pemisahan dapat ditingkatkan dengan besar.
Silika gel atau oktadesilsilan yang terikat pada silika gel digunakan sebagai fasa stationer. Fasa stationer cair tidak populer. Kolom yang digunakan untuk HPLC lebih pendek daripada kolom yang digunakan untuk kromatografi gas. Sebagian besar kolom lebih pendek dari 1 m.
Kromatografi penukar ion menggunakan bahan penukar ion sebagai fasa diam dan telah berhasil digunakan untuk analisis kation, anion dan ion organik.

Latihan

12.1 Distilasi fraktional
Tekanan uap dua cairan A dan B adalah 1,50 x 104 N m-2 dan 3,50 x 104 N m-2 pada 20°C. dengan menganggap campuran A dan B mengikuti hukum Raoult, hitung fraksi mol A bila tekanan uap total adalah 2,90 x 104 N m-2 pada 20°C.
12.1 Jawab
Fraksi mol A, nA, dinyatakan dengan.
(nA x 1,50 x 104) + (1 – nA) x 3,50 x 104 = 2,90 x 104 ∴ nA = 0,30

Awal mula penentuan struktur


Ditulis oleh Ramadhan wahyu
Sintesis dan pemurnian bahan bukan tujuan final bagi kimiawan. Yang harus didefinisikan adalah struktur bahan yang telah disintesis dan dimurnikan. Tahap ini kadang merupaka tahap yang palin sukar. Harus diakui bahwa sampai paruh akhir abad ke-20, kimiawan tidak dibekali dengan alat yang cukup untuk mengataso kesukaran ini. Beberapa kimiawan mengusulkan struktur yang tidak tepat bahkan untuk beberapa tahun. Namun, situasinya berubah drastis sejak dikembangkan berbagai teknik spektroskopi. NMR (Nuclear magnetic resonance) khususnya adalah metoda yang sangat unggul dibanding metoda-metoda yang lain. Untuk padatan kristalin, analisis kristalografi sinar-X terbukti sangat bermanfaat.
Sebelum dikenalkan teknik spektroskopi, yakni sampai paruh pertama abad 20, penentuan struktur senyawa organik didasarkan atas perbandingan dengan senyawa yang strukturnya telah diketahui. Bila semua sifat fisik dan kimia senyawa identik dengan senyawa yang telah dideskripsikan di literatur, dapat disimpulkan bahwa senyawa yang sedang dipelajari identik dengan snyawa yang strukturnya telah diketahui. Kriteria ini masih diadopsi hingga kini walaupun perbandingan yang dilakukan mungkin berbeda.
Bila sifat fisik dan kimia senyawa yang diselidiki tidak tepat dengan senyawa apapun yang sudah dikenal di literatur, besar kemungkinan senyawa ini adalah senyawa baru, belum pernah disintesis atau belum pernah dilaporkan. Dalam kasus semacam ini, masalah baru mungkin muncul. Bagaimana orang dapat menentukan struktur senyawa yang sama sekali baru? Metoda penentuan struktur berubah drastis pada pertengahan abad 20. Metoda tradisional, walaupun sederhana, sangat memakan waktu dan sukar dalam praktek: jadi, pertama struktur senyawa yang baru disintesis diasumsikan, dan kemudian suatu rute tertentu didesain untuk mengubah senyawa ini menjadi senyawa yang telah diketahui. Pengubahan itu mungkin memerlukan beberapa tahap. Sepanjang perubahan struktur yang disebabkan oleh tiap tahap teridentifikasi, pengubahan yang berhasil sampai senyawa yang diketahui merupakan bukti struktur yang diasumsikan. Harus ditambahkan bahwa reaksi untuk pengubahan ini dipilih dari reaksi yang hanya melibatkan gugus fungsi dan bukan kerangka molekulnya.
Kini penentuan struktur terutama dilakukan dengan metoda spektroskopik dan difraksi. Di bab ini, pertama akan dibahas metoda penentuan struktur yang tersedia sebelum zaman modern, baru setelah itu teknik modern didiskusikan. Harus ditambahkan kini tersedia banyak metoda untuk menentukan struktur. Misalnya, perhitungan kimia kuantum mungkin juga merupakan sumber informasi yang bermanfaat.

a. Uji titik leleh campuran

Metoda ini telah secara ringkas dibahas di bab sebelumnya (Bab 12..2). Seebelum pertengahan ada 20, prosedur utama dalam penentuan struktur senyawa organik adalah untuk membuktikan bahwa senyawanya identik dengan senyawa yang telah diketahui. Bukti ini terutama dicapai dengan uji titik leleh campuran (uji campuran). Metoda ini didasarkan prinsip bahwa titik leleh padatan paling tinggi ketika padatan itu murni. Bila dua sampel A dan B memiliki titik leleh yang sama, maka ditentukan titik leleh A murni, B murni dan campuran sejumlah sama A dan B. Bila hasil ketiganya sama, terbukti bahwa A dan B identik.
Dalam praktek, terdapat beberapa kerumitan. Titik leleh tidak selalu tajam, dan bahan cenderung meleleh dalam rentang suhu tertentu. Jadi, tidak mudah untuk menyatakan apakah dua titik leleh sama atau tidak. Namun, metoda dan teorinya sederhana dan jelas, dan telah digunakan sebagai sarana identifikasi selama beberapa tahun.

b. Penggunaan turunan padatan

Bila sampelnya berwujud cairan atau gas, metoda titik leleh campuran tidak dapat digunakan. Bila sampel gas atau cairan memiliki gugus fungsi yang reaktif, sampel ini dapat diubah menjadi padatan yang mungkin menghasilkan kristal yang indah. Aldehida dan keton, yang sangat penting dalam kimia organik, cenderung berupa cairan bila m assa molekulnya rendah. Dalam kasus semacam ini senyawa ini biasanya diubah menjadi turunannya yang padat yang lewbih mudah ditangani untuk penentuan struktur. Pereaksi yang dapat bereaksi dengan aldehida dan keton,
misalnya hidroksilamin NH2OH ??hidrazin NH2NH2 dan fenilhidrazin C6H5NHNH2 ??Sfenilhidrazin terkenal karena kimiawan Jerman Emil Fischer (1852-1919) menggunakannya dengan sukses dalam risetnya pada topik gula. Beberapa reaksi untuk mendapatkan kristal turunannya diberikan di bawah ini.
CH3CHO+NH2OH–>CH3CH=NOH +H2O (13.1)
Asetaldehida hidroksilamin asetaldoksim   

(CH3)2C=O+C6H5NHNH2 –>(CH3)2C=NNH C6H5 +H2O(13.2)
aseton fenilhydrazin asetonfenilhidrazon   
Senyawa turunan yang kristalin dapat digunakan untuk penentuan struktur senyawa yang tidak diketahui. Prosedurnya sama dengan yang dibahas di atas

c. Perbandingan sifat fisik

Sifat fisik lain seperti titik didih, indeks bias, momen dipol, dan rotasi spesifik untuk senyawa yang optik aktif dapat memberikan onformasi yang bermanfaat. Data semacam ini dapat memberikan informasi pda sifat keseluruhan molekul. Kadang, sifat molekul keseluruhan dapat merupakan jumlah dari berbagai kontribusi bagian-bagian senyawa. Dalam kasus sperti ini, informasi pada bagian tertentu senyawa dapat diperoleh. Misalnya, penggunaan momen dipol µ akan diberikan di bawah ini.
Momen dipol hasil perconaan untuk nitrobenzen (3,98 D) dan khlorobenzen (1,58 D), arah momen dipolnya ditentukan dengan sifat elektronik gugus fungsi (misalnya keelektronegatifan) (Gambar 13.1(a)). Dalam mendiskusikan momen dipol senyawa organik, momen ikatan C-C dan C-H diasumsikan nol. Jadi momen senyawa-senyawa tadi ditentukan terutama oleh momen ikatan gugus fungsinya.
Momen dipol dua isomer khloronitrobenzen adalah 2,50 D dan 3,40 D. Karena momen ikatan telah diidentifikasi sebagai isomer para dan meta sebagaimana diperlihatkan pada Gambar 13.1 (b).

Gambar 13.1 Momen dipol turunan benzen tersubstitusi. Perbandingan antara nilai yang diamati dan yang dihitung jelas menunjukkan orientasi relatif substituennya.

d. Reaksi kualitatif

Penentuan struktur senyawa organik biasanya meliputi dua pendekatan. Sebaliknya, informasi struktur secara kasar didapat dengan penentuan massa molekul, analisis unsur, dsb. Demikian juga informasi jenis dan jumlah gugus fungsi juga harus didapatkan. Jadi, informasi tentang molekul secaraa keseluruhan dan substituennya didapatkan secara seiring.
Sebelum perkembangan spektroskopi, identifikasi gugus fungsi bergantung terutama pada kereaktifannya. Contoh khasnya adalah deteksi gugus karbonil (aldehida -CHO dan keton -C=O) dengan menggunakan reaksi cermin perak dan uji Fehling.
Kini metoda seperti ini tidak pernah digunakan untuk mendeteksi aldehida di laboratorium riset manapun. Namun, reaksi semacam ini masih sangat penting tujuan pendidikan. Lebih lanjut, beberapa reaksi wa rna klasik masih digunakan. Contoh yang baik adalah reaksi ninhidrin, yang bahkan sekarang pun masih sangat bermanfaat untuk analisis asam amino.


Metode spektroskopik


Ditulis oleh Ramadhan wahyu
Penggunaan spektroskopi sebagai sarana penentuan struktur senyawa memiliki sejarah yang panjang. Reaksi nyala yang populer berdasarkan prinsip yang sama dengan spektroskopi. Di pertengahan abad ke-19, kimiawan Jerman Robert Wilhelm Bunsen (1811-1899) dan fisikawan Jerman Gustav Robert Kirchhoff (1824-1887) berkerjasama mengembangkan spektrometer (Gambar 13.2). Dengan bantuan alat baru ini, mereka berhasil menemukan dua unsur baru, rubidium dan cesium. Kemudian alat ini digunakan banyak kimiawan untuk menemukan unsur baru semacam galium, indium dan unsur-unsur tanah jarang. Spektroskopi ntelah memainkan peran penting dalam penemuan gas-gas mulia.
Metoda penyelidikan dengan bantuan spektrometer disebut spektrometri. Dengan sumber cahaya apapun, spektrometer terdiri atas sumber sinar, prisma, sel sampel, detektor dan pencatat. Fungsi prisma adalah untuk memisahkan sinar polimkromatis di sumber cahaya menjadi sinar monokromatis, dan dengan demikian memainkan peran kunci dalam spektrometer.
Dalam spektrometer modern, sinar yang datang pada sampel diubah panjang gelombangnya secara kontinyu. Hasil percobaan diungkapkan dalam spektrum dengan absisnya menyatakan panjang gelombang (atau bilangan gelombang atau frekuensi) sinar datang dan ordinatnya menyatakan energi yang diserap sampel.

Gambar 13.2 Spektrometer yang dibuat oleh Bunsen dan Kirchhoff. Awalnya tetektor yang digunakan sangat sederhana (mata manusia).
Kemudian pelat fotografi digunakan dengan ekstensif.

a. Spektroskopi UV-VIS

Umumnya spektroskopi dengan sinar ultraviolet (UV) dan sinar tampak (VIS) dibahas bersama karena sering kedua pengukuran dilakukan pada waktu yang sama. Karena spektroskopi UV-VIS berkaitan dengan proses berenergi tinggi yakni transisi elektron dalam molekul, informasi yang didapat cenderung untuk molekul keseluruhan bukan bagian-bagian molekulnya. Metoda ini sangat sensitif dan dengan demikian sangat cocok untuk tujuan analisis. Lebih lanjut, spetroskopi UV-VIS sangat kuantitatif dan jumlah sinar yang diserap oleh sampel diberikan oleh ungkapan hukum Lambert-Beer. Menurut hukum ini, absorbans larutan sampel sebanding dengan panjang lintasan cahaya d dan konsentrasi larutannya c.
The Lambert-Beer law
log10 (I0/I) = εcd (13.3)
ε koefisien ekstingsi molar, yang khas untuk zat terlarut pda kondisi pengukuran. I0 dan I adalah intensitas cahaya setelah melewati pelarut murni dan larutan. I/I0 juga disebut dengan transmitans T??/p>
Contoh soal 13.1 Hukum Lambert-Beer
Suatu larutan dalam air senyawa X ditempatkan dalam sel berketabalan 1 cm dan absorbansnya pada λ = 366 nm ditentukan pada berbagai konsentrasi. Nilai transmitans dituliskan dalam tabel berikut.
c (10-4 mol dm-3)
T
0,80
0,420
1,20
0,275
1,60
0,175
2,00 0,110
Tentukan koefisien ekstingsi molar X.
Jawab
c (10-4 mol dm-3)
A
0,80
0,377
1,20
0,5 61
1,60
0,757
2,00 0,959
Hubungan linear didapatkan bila A diplotkan terhadap c, yang menunjukkan hukum Lambert-Beer dipenuhi. Kemiringan plotnya sekitar 4,9 x 103 dm3 mol-1 ??adi ε = (kemiringan)/d = 490 dm3 mol-1 ??
Dengan mengukur transmitans larutan sampel, dimungkinkan untuk menentukan konsentrasinya dengan menggunakan hukum Lambert-Beer. Karena spektroskopi UV-VIS sangat sensitif dan spektrometernya dapat dibuat dengan ukuran yang sangat kecil, metoda ini khususnya sangat bermanfaat untuk analisis lingkungan, dan khususnya cocok untuk pekerjaan di lapangan.
Hukum Lambert-Beer dipenuhi berapapun panjang gelombang sinar yang diserap sampel. Panjang gelombang sinar yang diserap oleh sampel bergantung pada struktur molekul sampelnya. Jadi spektrometri UV-VIS dapat digunakan sebagai sarana penentuan struktur. Sejak 1876, kimiawan Swiss-Jerman Otto Nikolaus Witt (1853-1915) mengusulkan teori empiris warna zat (yang ditentukan oleh panjang gelombang sinar yang diserap) dan struktur bagian-bagiannya. Menurut teori ini, semua senyawa berwarna memiliki beberapa gugus tak jenuh seperti yang diberikan di Gambar 13.3. Gugus fungsi semacam ini disebut dengan kromofor. Semua senyawa pewarna dan pigmen memiliki kromofor.
Terdapat beberapa faktor lain yang harus diperhatikan sehubungan dengan warna senyawa. Panjang konjugas linear adalah faktor yang penting. Misalnya, warna merah ß-karoten (Gambar 13.4) berasal dari sistem terkonjugasi, dan warna ini cocok dengan hasil perhitungan kimia kuantum.
Terdapat beberapa gugus fungsi, seperti -NR2, -NHR, -NH2, -OH dan -OCH3, yang memiliki efek memekatkan warna kromofornya. Semua ini disebut auksokrom.

Gambar 13.4 Struktur ß-karoten. Warna merah wortel dan tomat adalah akibat sistem terkonjugasi yang panjang ini.
Namun, tidak mungkin menyimpulkan struktur senyawa dari senyawa dari warnanya atau panjang gelombang sinar yang diserapnya.

b. Spektroskopi Infra merah (IR)

Dibandingkan dengan panjang gelombang sinar ultraviolet dan tampak, panjang gelombang infra merah lebih panjang dan dengan demikian energinya lebih rendah. Energi sinar inframerah akan berkaitan dengan energi vibrasi molekul. Molekul akan dieksitasi sesuai dengan panjang gelombang yang diserapnya. Vibrasi ulur dan tekuk adalah cara vibrasi yang dapat diekstitasi oleh sinar dengan bilangan gelombag (jumlah gelombang per satuan panjang) dalam rentang 1200-4000 cm-1.
Hampir semua gugus fungsi organik memiliki bilangan gelombang serapan khas di daerah yang tertentu. Jadi daerah ini disebut daerah gugus fungsi dan absorpsinya disebut absorpsi khas. Gambar 13. 5 menunjukkan spektra IR tiga senyawa karbonil. Semua senyawa memiliki serapan kuat di rentang 1700-1750 cm-1.
Bilangan gelombang vibrasi ulur karbonil agak berbeda untuk aldehida, keton dan asam karboksilat, yang menunjukkan bahwa analisis bilangan gelombang karakteristik dengan teliti dapat memberikan informasi bagian struktur molekulnya. Di Tabel 13.1 serapan khas beberapa gugus ditabelkan. Serapan khas sungguh merupakan informasi yang kaya, tetapi anda harus ingat bahwa kekuatan absorpsi tidak memberikan informasi kuantitatif. Dalam hal ini, spektroskopi IR memang bersifat kualitatif, berbeda dengan spektrokopi UV-VIS dan NMR.
Seperti jelas terlihat di Gambar 13.5, di daerah di bawah 1600 cm-1, terdapat beberapa puncak yang berhubungan dengan overtone dan kombinasi tone beberapa serapan, selain frekuensi serapan ulur dan tekuk beberapa ikatan tunggal. Walaupun sukar untuk menandai setiap puncak, pola umumnya khas untuk senyawa tersebut seprti sidik jari orang. Jadi, daerah ini disebut dengan daerah sidik jari. Anda harus ingat bahwa kecocokan spektra IR dua senyawa adalah bukti tak terbantahkan bahwa dua senyawa tersebut identik. Karena pembandingan dapat dilakukan dengan spektrum yang telah direkam, di sini tidak diperlukan sampel standar seperti yang diperlukan dalam uji titik leleh campuran. Uji titik leleh campuran mulai jarang digunakan sejak berkembangnya spektroskopi IR.
Karena kayanya informasi dalam struktur senyawa organik, harus diakui

Gambar 13.5 Spektra IR tiga senyawa karbonil. (a) propanal CH3CH2CHO; (b) aseton CH3COCH3; (c) asam propanoat CH3CH2COOH
Tabel 13.1 Serapan khas beberapa gugus.

bahwa spektra IR informasinya tak sekaya spektra NMR. Namun, spektroskopi IR tetap, akan tetap merupakan satu dari teknik yang paling sering digunakan untuk mendapatkan informasi struktur berbagai tipe senyawa. Keuntungan spektroskopi IR dibanding NMR adalah pengukurannya mudah dan sederhana, dan spektra IR tidak terlalu dipengaruhi oleh kondisi pengukuran.
Contoh soal 13.2 Spektrum IR
Di Gambar 13.5, ditunjukkan spektra IR (a) propanal CH3CH2CHO??b) aseton (CH3)2CO dan (c) asam propanoat CH3CH2COOH. Tandai puncak-puncak yang ditandai dengan angka (1) dan (2) untuk setiap senyawa.
Jawab (a) (1) C-H ulur (aldehida); (2) C=O ulur (b) (1) C-H ulur (2) C=O ulur (c) (1) O-H ulur; (2) C=O ulur.
Selingan- Penentuan struktur tetrodotoksin, racun dari ikan puffer
Tahun 1964 adalah tahun yang tidak terlupakan dalam sejarah kimia organik Jepang. Penentuan struktur tetrodotoksin, racun dari ikat puffer, adalah tema yang sangat menarik namun sukar pada waktu itu. Banyak kimiawan organik, termasuk Woodward, angkat tangan pada masalah ini. Di tahun itu, International Conference on Natural Products Chemistry diselenggarakan di Jepang, dan tiga periset — Woodward, Yoshimasa Hirata (1915-2000) dan Kyosuke Tsuda (1907-1999), melaporkan struktur tetrodotoksin yang telah mereka tentukan. Ketiganya identik!
Kesuksesan mereka mengindikasikan bahwa saintis Jepang sekaliber peraih Nobel. Woodward menggunakan kristalografi sinar-X, dan Tsuda menggunakan data spektroskopi NMR.

Spektroskopi NMR


Ditulis oleh Ramadhan wahyu

a. Prinsip

Banyak inti (atau lebih tepat, inti dengan paling tidak jumlah proton atau neutronnya ganjil) dapat dianggap sebagai magnet kecil. Inti seperti proton (1H atau H-1) dan inti karbon-13 (13C atau C-13; kelimpahan alaminya sekitar 1%). Karbon -12 (12C), yang dijadikan standar penentuan massa, tidak bersifat magnet.
Bila sampel yang mengandung 1H atau 13C (bahkan semua senyawa organik) ditempatkan dalam medan magnet, akan timbul interaksi antara medan magnet luar tadi dengan magnet kecil (inti). Karena ada interaksi ini, magnet kecil akan terbagi atas dua tingkat energi (tingkat yang sedikit agak lebih stabil (+) dan keadaan yang kurang stabel (-)) yang energinya berbeda. Karena dunia inti adalah dunia mikroskopik, energi yang berkaitan dengan inti ini terkuantisasi, artinya tidak kontinyu. Perbedaan energi antara dua keadaan diberikan oleh persamaan.
E = γhH/2π(13.4)
H kuat medan magnet luar (yakni magnet spektrometer), h tetapan Planck, γ tetapn khas bagi jenis inti tertentu, disebut dengan rasio giromagnetik dan untuk proton nilainya 2,6752 x 108 kg-1 s A (A= amper)??
Bila sampel disinari dengan gelombang elektromagnetik ν yang berkaitan dengan perbedaan energi E, yakni,
E = hν (13.5)
inti dalam keadaan (+) mengabsorbsi energi ini dan tereksitasi ke tingkat energi (-). Proses mengeksitasi inti dalam medan magnetik akan mengabsorbsi energi (resonansi) disebut nuclear magnetic resonance (NMR)??
Frekuensi gelombang elektromagnetik yang diabsorbsi diungkapkan sebagai fungsi H.
ν = γH/2π(13.6)
Bila kekuatan medan magnet luar, yakni magnet spektrometer, adalah 2,3490 T(tesla; 1 T = 23490 Gauss), ν yang diamati sekitar 1 x 108 Hz = 100 MHz??ilai frekuensi ini di daerah gelombang mikro.
Seacara prinsip, frekuensi gelombang elektromagnetik yang diserap ditentukan oleh kekuatan magnet dan jenis inti yang diamati. Namun, perubahan kecil dalam frekuensi diinduksi oleh perbedaan lingkungan kimia tempat inti tersebut berada. Perubahan ini disebut pergeseran kimia.
Dalam spektroskopi 1H NMR, pergeseran kimia diungkapkan sebagai nilai relatif terhadap frekuensi absorpsi (0 Hz) tetrametilsilan standar (TMS) (CH3)4Si??ergeseran kimia tiga jenis proton dalam etanol CH3CH2OH adalah sekitar 105??25 dan 490 Hz bila direkam dengan spektrometer dengan magnet 2 1140 T (90 MHz) (Gambar 13.6(a))??arena frekuensi absorpsi proton adalah 0,9 x 108Hz (90 MHz), pergeseran kimia yang terlibat hanya bervariasi sangat kecil.

Gambar 13.6 1H spektra NMR etanol CH3CH2OH (a) spektrum resolusi rendah,
(b) resolusi tinggi. Garis bertangga adalah integral intensitas absorpsi.
Frekuensi resonansi (frekuensi absorpsi) proton (atau inti lain) sebanding dengan kekuatan magnet spektrometer. Perbandingan data spektrum akan sukar bila spektrum yang didapat dengan magnet berbeda kekuatannya. Untuk mencegah kesukaran ini, skala δ, yang tidak bergantung pada kekuatan medan magnet, dikenalkan. Nilai δ didefinisikan sebagai berikut.
δ = (ν/ν) x 106 (ppm) (13.7)
ν perbedaan frekuensi resonansi (dalam Hz) inti yang diselidiki dari frekuensi standar TMS (dalam banyak kasus) dan ν frek uensi (dalam Hz) proton ditentukan oleh spektrometer yang sama. Anda harus sadar bahwa Hz yang muncul di pembilang dan penyebut persamaan di atas dan oleh karena itu saling meniadakan. Karena nilai ν/ν sedemikian kecil, nilainya dikalikan dengan 106. Jadi nilai δ diungkapkan dalam satuan ppm.
Untuk sebagian besar senyawa, nilai δ proton dalam rentang 0-10 ppm. Nilai δ tiga puncak etanol di Gambar 13. 6 adalah 1,15; 3,6 dan 5,4??
Penemuan pergeseran kimia memberikan berbagai kemajuan dalam kimia. Sejak itu spektroskopi NMR telah menjadi alat yang paling efektif untuk menentukan struktur semua jenis senyawa. Pergeseran kimia dapat dianggap sebagai ciri bagian tertentu struktur. Misalnya, pergeseran kimia proton dalam gugus metil sekitar 1 ppm apappun struktur bagian lainnya. Lebih lanjut, seperti yang ditunjukkan di Gambar 13.6, dalam hal spektra 1H NMR, intensitas sinyal terintegrasi sebanding dengan jumlah inti yang relevan dengan sinyalnya. Hal ini akan sangat membantu dalam penentuan struktur senyawa organik.
Selingan- Penemuan pergeseran kimia
Tahun 1964 adalah tahun yang tidak terlupakan sejarah kimia organik Jepang. Spektroskopi NMR awalnya diteliti oleh fisikawan yang tertarik pada sifat magnetik inti. Pengamatan pertama sinyal NMR dilakukan secara independen dan hampir simultan oleh dua fisikawan Amerika Felix Bloch (1905-1983) dan Edward Mills Purcell (1912-1987). Keduanya mendapatkan hadiah Nobel tahun 1952.
Menurut teori ini, frekuensi resonansi proton air dan parafin (hidrokarbon) identik sepanjang inti, proton yang sama yang diukur. Namun, beberapa perbedaan kecil mungkin diamati antara nilai satu frekuensi resonansi dua sampel. Pertanyaan yang timbul adalah apakah perbedaan ini adalah sifat khas alami, atau karena ketidakpastian percobaan.
Tak sengaja masalah ini diketahui oleh kimiawan yang kemudian menyarankan agar mereka mengukur spektrum etanol, dengan mengatakan bahwa etanol memiliki dua jenis proton, satu seperti air dan satunya seperti parafi. Saran ini diterima dan hasilnya sungguh menakjubkan. Jadi, pergeseran kimia ditemukan akibat kerjasama fisika dan kimia.
Contoh soal 13.3 spektrum 1H NMR
Sketsakan bentuk kira-kira spektrum 1H NMR 1-propanol CH3CH2CH2OH, dan identifikasi asal tiap sinyal. Prosedur ini disebut dengan penandaan (assignment).
Jawab
Pola spektrumnya dekat dengan pola spektrum etanol kecuali satu sinyal tambahan dari -CH2. Sinyal ini diharapkan muncul antara δ 1 dan δ 5 di Gambar 13.5. Anda harus memperhatikan bahwa proton dekat atom oksigen akan beresonansi pada medan rendah (yakni spektrum sisi kiri).

b. Kopiling spin-spin

Bahkan bila pergeseran kimia adalah satu-satunya informasi yang dihasilkan oleh spektroskopi NMR, nilai informasi dalam penentuan struktural senyawa organik sangat besar maknanya. Selain itu, spektroskopi NMR dapat memberikan informasi tambahan, yakni informasi yang terkait dengan kopling spin-spin.
Sebagaimana sudah Anda pelajari, tingkat energi inti (yakni, proton) terbelah menjadi keadaan berenergi tinggi dan rendah. Selain itu, tingkat-tingkat energi ini membelah lebih lanjut karena interaksi dengan inti tetangganya (inti-inti adalah magnet-magnet sangat kecil juga). Pembelahan ini sangat kecil tetapi akan memiliki akibat yang penting, yakni, pembelahannya tidak dipengaruhi oleh kekuatan medan magnet spektrometer. Pembelahannya hanya bergantung pada interaksi inti-inti.
Bila spektrum 1H NMR etanol diukur dengan kondi si lebih baik (uakni resolusi lebih baik), sinyal CH3- dan CH2- tebelah menjadi multiplet (Gambar 13.6(b)). Pembelahan ini karena adanya kopling spin-spin antar proton. Spektra yang menunjukkan pembelahan kopling spin-spin ini disebut spektra resolusi tinggi. Sedang spektra yang tidak menunjukkan pembelahan ini disebut spektra resolusi rendah.
Latihan
Pertanyaan 13.1 Prediksi spektrum 1H NMR
Gambarkan sketsa spektra 1H NMR resolusi rendah dengan grafik batang.
(a) etil asetat CH3COOCH2CH3, (b) isopropil asetat CH3COOCH(CH3)2
Jawab 13.1
Lihat Gambar berikut, angka di samping angka dalam tanda kurung menunjukkan jumlah proton yang relevan.

Pandangan baru tentang materi


Ditulis oleh Ramadhan wahyu
Sejak modernisasi kimia di akhir abad 18, kimia selalu dan dengan cepat berkembang. Karena dasar dari perkembangan ini adalah teori atom/molecular, kita dapat menyebut 200 tahun perkembangan ini sebagai era kimia molecular. Dengan terbitnya abad 21, kimia telah meraih sukses dalam meluaskan lingkup kajiannnya. Peran interaksi lemah telah dikenali, dan prosepek baru kimia supramolekular telah terbuka. Di pihak lain, kimia mempunyai peran besar untuk melestarikan lingkungan, dan kita harus mencari cara agar alam dan manusia dapat berdampingan dengan langgeng, yang dalam terminologi modern disebut masyarakat berkelanjutan sustainable societies. Banyak yang kimia dan kimiawab harus lakukan.

a. Deteksi interaksi lemah

Dari kelahiran kimia modern sejak akhir abad 18 sampai akhir abad 20, kimia lebih berbasisikan pada molekul yang terdiri atas atom-atom dan ikatan ionik dan kovalen yang mengikat atom-atom tersebut. Struktur, sifat dan fungsi telah dijelaskan dari sudut pandang molekul. Telah dianggap otomatis, bila orang mengenal molekul, maka sisfat dan fungsinya akan dikenal pula. Kimia yang didasarkan atas asumsi ini mungkin dapat disebut dengan kimia molekular.
Namun, terdapat beberapa kimiawan yang menganggap pandangan seperti itu mungkin terlalu menyederhanakan. Bahkan sejak 1920 an, telah dikenali material yang struktur dan sifatnya tidak dapat dijelaskan dari sudut pandang molekul. Di waktu itu, konsep ikatan hidrogen dengan berhasil telah digunakan untuk menjelaskan penggabungan parsial asam asetat dan air. Ikatan hidrogen tidak dapat dimasukkan dalam lingkup terori valensi yang diformulasikan oleh Kekulé. Walaupun ikatan hidrogen dalam kekuatannya hanya 1/10 ikatan kovalen normal, ikatan ini memungkinkan molekul terikat secara lemah satu sama lain. Dari sudut pandang ini, ikatan hidrogen dapat disebut suatu jenis ikatan kimia.
Konsep lain, gaya antarmolekul atau van der Waals dikenalkan untuk menjelaskan fakta molekul non polar semacam H2 mengkristal pada temperatur yang sangat rendah. Gaya dorong ikatan ion, yakni gaya Coulomb berbanding terbalik dengan kuadrat jarak. Gaya van der Waals berbanding terbalik dengan jarak pangkat enam, dan dengan demikian kekuatannya berbeda.

b. Senyawa klatrat

Bila senyawa hidrokarbon alifatik seperti oktana C8H18 ditambahkan pada larutan urea H2NCONH2, batang-batang kristal yang cantik akan mengendap. Kristal ini terdiri atas urea dan oktana, tetapi perbandingannya tidak bilangan bulat. Lebih lanjut dengan pemanasan yang pelahan, kristalnya akan terdekomposisi menjadi urea dan oktana. Fakta-fakta ini mengindikasikan bahwa kedua komponen tidak terikat dengan ikatan kovalen atau ionik biasa.
Struktur kristalnya (yang pada waktu itu disebut adduct urea) dielusidasi dengan analisis kristalografi sinar-X.. Berdasarkan hasil analisis ini, molekul urea membentuk rantai ikatan hidrogen, dan rantai ini membentuk spiral, yang menyisakan kolom kosong di tengahnya. Molekul-molekul oktana terjebak di dalam kolom kosong ini, dan tetap tinggal dalam ruang ini karena adanya interaksi lemah.
Dalam senyawa seperti ini, ada interaksi lemah yang di luar lingkup ikatan kimia konvensional. Senyawa-senyawa seperti ini disebut dengan senyawa inklusi atau klatrat. Senyawa yang perannya mirip dengan urea dalam contoh tadi disebut inang atau tuan rumah , dan yang mirip perannya dengan oktana disebut tamu. Demikianlah cabang baru kimia, kimia tuan rumah tamu (host guest chemistry) muncul.
Sebelum ditemukan adduct urea, senyawa inklusi yang terdiri atas hidrokuinon (senyawa ini digunakan sebagai reduktor dalam fotografi) sebagai tuan rumah telah menarik perhatian besar. Bedasarkan struktur yang diungkap dari analisis kristalografi sinar-X, tiga molekul hidrokuinon me njadi tuan rumah yang menjebak satu molekul tamu-metanol. Rumus molekul klatrat ini adalah CH3OH·3C6H4(OH)2. Hidrokuinon dapat juga menjebak tamu lain seperti argon.

c. Penemuan eter mahkota

Senyawa klatrat semacam urea dan hidrokuinon sungguh merupakan kejutan bagi kimiawan. Namun, harus diakui bahwa dalam kristal tamu dan tuan rumahnya harus berdekatan. Dalam kasus semacam ini, intetraksi lemah mungkin terjadi, walaupun interaksi semacam ini di luar lingkup ikatan kimia konvensional. Namun, situasinya akan berbeda di larutan
Sekitar tahun 1967, kimiawan Amerika Charles J. Pedersen (1904-1989) mendapatkan eter siklik sebagai produk samping salah satu reaksi yang dia pelajari. Ia mempelajari dengan baik sifat-siaft aneh eter ini. Senyawa ini sukar larut dalam metanol, tetapu menjadi mudah larut bila ia menambahkan garam natrium dalam campurannya. Lebih lanjut, larutan dalam benzen eter ini dapat melarutkan kalium dikromat K2Cr2O7 dan menunjukkan warna ungu yang antik. Ia sangat bingung menjelaskan fenomena-fenomena ini, mengatakan bahwa ion natrium atau kalium nampak masuk dalam rongga di pusta molekul ini (Gambar 14. 1).

(a) eter mahkota dibenzo -18 bebas. (b) eter mahkota dibenzo -18 yang menangkap ion K+.
Dari “Crown Ethers & Cryptands” oleh G. Gokel, Royal Society of Chemistry, 1991
Beberapa tahun kemudian terbukti bahwa ide Pedersen ternyata benar, dan memang, kation terjebak dalam rongga molekulnya. Dia mengusulkan nama senyawa ini eter mahkota karena bentuk molekulnya mirip mahkota, dan usulnya ini diterima masyarakat kimia dunia. Di tahun 1987, bersama dengan kimiawan Amerika lain Donald James Cram (1919-2001) dan kimiawan Perancis Jean-Marie Lehn (1939-), Pedersen dianugerahi hadiah Nobel Kimia.

d. Kimia susunan molekular (molecular assemblies)

Interaksi antara eter mahkota dan kation logam alkali disebut dengan interaksi lemah dari sudut pandang ikatan kimia konvensional. Terbukti kemudian bahwa interaksi seperti ini, yang ada tidak hanya dalam kristal tetapi juga dalam larutan, lebih umum dari yang diharapkan. Produk alam valinomisin, yang dietemukan dalam waktu yang sama, dapat juga digunakan untuk menangkap dan mentransport ion, dan lebih lanjut, membawa kation logam alkali kedalam makhluk hidup melalui membran. Senyawa dengan fungsi semacam itu disebut ionofor. Kemiripan struktur antara valinomisin, suatu produk alam, dan eter mahkota, produk sintetis, sangat nyata walaupun kedua senyawa ini berbeda asalnya (Gambar 14.2).

Gambar 14.2 Ionofor yang dapat menangkap dan mentransport ion.
a) senyawa sintetis eter dibenzo-18- mahkota -6.
(b) senyawa alam: valinomisin (antibiotik)
Paralel dengan penemuan ionofor, suatu gerakan untuk menyatukan kimia dan ilmu hayati, dan kimia anorganik dan ilmu hayati, muncul di pertengahan akhir abad 20. Isyarat penting untuk memahami mekanisme kehidupan adalah mempelajari proses (reaksi) dalam berbagai susunan produk alam yang membentuk kompleks atau membran yang mengikuti aturan tertentu. Isyarat penting lain adalah interaksi lemah antara produk-produk alam, yakni pembentukan sel, reaksi katalitik yang melibatkan kompleks substrat- enzim dan ko-enzim, dan interaksi antara hormon atau obat dan reseptor.
Untuk malacak isyarat tersembunyi ini, kimia organik dan anorganik harus memainkan peran. Cabang baru sains yang tujuannya menyatukan kimia organik dan ilmu hayati ini disebut kimia bioorganik.
Sifat khas zat yang mengatur kehidupan, misalnya enzim, adalah gugus fungsi yang biasanya didiskusikan di kimia organik. Namun, terdapat banyak kasus fungsinya lebih rumit. Da lam beberapa kasus zat ini mengandung unsur transisi di pusat aktifnya, yang kemudian melahirkan perkawinan antara kimia anorganik dan ilmu hayati, dan cabang sains baru, kimia bioanorganik lahir.
Baik kimia bioorganik maupun bioanorganik mencakup tidak hanya molekul konvensional tetapi juga semua jenis susunan yang terbentuk dengan interaksi lemah di antara berbagai spesi kimia (molekul dan ion, dsb). Mungkin dapat dikatakan bahwa kimia bioorganik dan bioanorganik secara khusus membahas susunan ini.

e. Kimia supramolekul

Kini karena peran susunan itu sangat penting, mungkin lebih baik bila kita beri susunan tersebut nama yang tepat.. Lehn mengusulkan nama “supramolekul” dan nama ini secara luas diterima di masyarakat kimia. Jadi kimia yang mempelajari supramolekul disebut dengan kimia supramolekul.
Mungkin orang mengira bahwa supramolekul memiliki keteraturan yang lebih rendah dari molekul konvensioanl karena gaya yang mengikat partikel-partikel konstituen dalam supramolekul adalah interaksi lemah bukannya ikatan kimia yang kuat. Namun, ini justru kekeliruan. Interaksi lemah dalam supramolekul keselektifannya sangat tinggi, dan ini mirip dengan interaksi antara enzim dengan substratnya yang dapat diumpamakan dengan hubungan antara anak kunci dan lubangnya. Interaksi intermolekul ini mungkin sangat tinggi keteraturannya.
Di abad 21 ini diharapkan kimia molekular dan supramolekular akan berkembang secara paralel.. Kimia supramolekul akan menambah dalam tidak hanya pemahaman kita akan makhluk hidup tetapu juga riset kita dalam bidang kimia molekular. Juga harus diakui bahwa semua molekul pasti akan berinteraksi dengan molekul di sekitarnya. Molekul yang terisolasi hanya mungkin ada di ruang kosmik.

Kesetimbangan dengan alam


Ditulis oleh Ramadhan wahyu

a. Efek “skala besar” zat

Walaupun sukar untuk meramalkan arah dan lingkup perkembangan kimia abad 21, jelas bahwa kimia di abad 21 harus menjaga kesetimbangan yang baik dengan alam. Lebih lanjut, kimia harus mengembalikan lingkungan yang pada derajat tertentu telah rusak. Kimia dan industri kimia sebelum pertengahan abad 20 dibiarkan berkembang tanpa batasan dan pertanggungjawaban. Kerusakan yang diakibatkan oleh perkembangan itu meluas di mana-mana.
Baru pada pertengahan abad 20 itulah kita menyadari bahwa kita telah kehilangan banyak akibat perkembangan industri kimia yang cepat dan ekstensif. Tetapi orang yang menyadari masalah ini masih sedikit. Lebih-lebih, tanggapan pemerintah dan masyarakat ilmiah tidak juga segera. Namun, untungnya dengan waktu orang menyadari bahwa ada masalah.
Di awal gerakan lingkungan, efek langsung seperti kerusakan lingkungan di dekat pabrik yang menjadi perhatian. Perlu beberapa waktu sebelum orang mengkritisi industrinya.
Indikasi awal dampak kerusakan lingkungan oleh produk tertentu bukan polusi di daerah industri atau perkotaan, tetapi kerusakan alam yang lebih luas yang diisukan oleh ekologis Amerika Rachel Carson (1907-1964). Ia mempublikasikan buku “Silent Spring” (Gambar 14. 3) di tahun 1962 yang kemudian menjadi buku terlarus di berbagai negara. Buku ini dengan jelas memaparkan dampak penggunaan bahan kimia yang berlebihan di pertanian, khususnya bahan kimia yang mengandung khlorin.

Gambar 14.3 Buku “Silent Spring” yang memberi peringatan pada dunia.
Kemudian dampak defolian (zat yang digunakan untk menggugurkan daun) yang digunakan dalam Perang Vietnam oleh tentara Amerika menjadi isu sosial yang serius. Isu yang lebih serius sekarang adalah kerusakan lapisan ozon oleh freon dan efek rumah kaca (pemanasan global) yang disebabkan oleh karbondioksida. Masalah pemanasan global sangat berkait dengan masalah energi. Berapa banyak energi yang dapat dan harusnya kita gunakan adalah masalah serius yang menantang kita.
Ada poin umum dalam masalah-masalah yang didiskusikan di atas. Sebab utama adalah fakta bahwa jumlah zat yang melimpah telah didifusikan ke lingkungan. Sejumlah kecil bahan pertanian, freon atau defolian yang dibuat di laboratorium mungkin tidak akan berakibat serius bila terdifusi ke lingkungan. Kerusakannya akan terlokalisasi. Namun, bila zat ini diproduksi dalam skala raksasa dan didifusikan di seluruh dunia, akan muncul masalah serius. Mungkin dapat kita sebut “efek skala besar” yang disebabkan difusi zat kimia.
Untuk memprediksi “efek skala besar” zuatu zat, pengetahuan yang didapatkan dari mempelajari kimia molekular sejumlah kecil zat tidak akan cukup. Sebelum memproduksi dan mendifusikan sejumlah besar zat, orang yang menggunakan dan kimiawan yang membuatnya harus tahu dan mempertimbangkan apa yang akan terjadi bila sejumlah besar zat itu dilepaskan ke lingkungan.

b. Kimia lingkungan

Usaha-usaha untuk melindungi bumi dari kerusakan lebih lanjut melahirkan cabang kimia baru, yakni kimia lingkungan. Apa yang dapat kimia lakukan untuk memperbaiki lingkungan bergantung pada situasinya. Dalam isu kerusakan lapisan ozon, kimia memerankan peran menentukan dari awal. Kimiawanlah yang mendeteksi adanya masalah dan yang mengusulkan metoda untuk memecahkan masalah ini. Sudah sejak tahun 1974, kimiawan Amerika Sherwood Roland (1927-) memprediksikan kemungkinan destruksi lapisan ozon. Kebenarannya dibuktikan tahun 1985, dan isu ini kemudian berpindah dari kimia ke politik. Setelah banyak diskusi dan negosiasi, persetujuan final dicapai di skala dunia, dan diputuskan melarang penggunaan freon.

Gambar 14.4 F. Sherwood Rowlan d (1927-)
Pemenang Nobel Kimia (1995)
Di tahun 1995, hadiah Nobel kimia dianugerhakan ke tiga kimiawan termasuk Rowland yang telah memberikan sumbangan bear pada kimia lingkungan. Merupakan hal penting bahwa kimiawan dalam bidang kimia baru ini diberi hadiah Nobel. Ini juga menunjukkan bahwa dunia mulai mengenal pentingnya kimia lingkungan.
Peran kimia dalam isu energi juga sangat besar. Perlu segera dilakukan reduksi konsumsi bahan bakar fosil untuk menjaga lingkungan dan sumber daya alam. Kimia dapat menyumbangkan banyak hal untuk memecahkan isu energi dengan memproduksi sel surya yang efisien atau dengan mengembangkan kimia C1 yang bertujuan mengubah senyawa satu atom karbon seprti karbon dioksida menjadi bahan bakar, dsb.
Sebagai kesimpulan, peran kimia adalah untuk mengendalikan agar masyarakat berkelanjutan dapat dicapai. Masyarakat berkelanjutan adalah slogan yang indah. Namun, untuk mencapainya bukan hal sederhana. Kita percaya kimia dapat berkontribusi besar untuk merealisasikan masyarakat berkelanjutan itu.

Sintesis bahan anorganik industri


Ditulis oleh Ramadhan wahyu
Karena struktur senyawa anorganik biasanya lebih sederhana daripada senyawa organik, sintesis senyawa anorganik telah berkembang dengan cukup pesat dari awal kimia modern. Banyak pengusaha dan inventor secara ekstensif mengeksplorasi sintesis berbagai senyawa yang berguna. Dengan kata lain sintesis senyawa anorganik bermanfaat besar secara aktif dilakukan sebelum strukturnya atau mekanisme reaksinya diklarifikasi. Beberapa contoh khas diberikan di bawah ini.

a. Natrium karbonat Na2CO3

Sepanjang sejarah industri kimia, persediaan natrium karbonat Na2CO3, soda, merupakan isu penting. Soda adalah bahan dasar penting bukan hanya untuk keperluan sehari-hari (seperti sabun) tetapi juga untuk produk industri yang lebih canggih (seperti gelas).
Di waktu lampau soda didapatkan dari sumber alami, dan kalium karbonat K2CO3, yang juga digunakan dalam sabun, didapatkan dalam bentuk abu kayu. Setelah revolusi industri, kebutuhan sabun meningkat dan akibatnya metoda sintesis baru dengan bersemangat dicari. Waktu itu telah dikenali bahwa soda dan garam (NaCl) mengandung unsur yang sama, natrium, dan penemuan ini mengakibatkan banyak orang berusaha membuat soda dari garam. Di awal abad 19, suatu proses baru dikembangkan: natrium sulfat yang merupakan produk samping produksi asam khlorida (yang digunakan untuk serbuk pengelantang, bleaching), batu bara dan besi dinyalakan. Namun, hasilnya, rendah dan tidak cocok untuk produksi skala besar .
Inventor Perancis Nicolas Leblanc (1742-1806) mendaftar suatu kontes yang diselenggarakan oleh Académie des Sciences, untuk menghasilkan secara efektif soda dari garam. Esensi dari prosesmua adalah penggunaan marmer (kalsium karbonat) sebagai ganti besi.

Na2SO4 + 2C –> Na2S + 2CO2 (11.1)
Na2S + CaCO3 –> Na2CO3 + CaS (11.2)
2NaCl + H2SO4 –> Na2SO4 + 2HCl (11.3)
Proses Leblanc dapat menghasilkan soda dengan kualitas lebih baik daripada metoda sebelumnya. Namun, proses ini menghasilkan sejumlah produk samping seperti asam sulfat, asam khlorida, kalsium khlorida, kalsium sulfida dan hidrogen sulfida. Bahkan waktu itu pun, pabrik menjadi target kritik masyarakat. Peningkatan kualitas proses Leblanc sangat diperlukan khususnya dari sudut pandang penggunaan ulang produk sampingnya, yang jelas akan menurunkan ongkos produksi.
Satu abad setelah usulan proses Leblanc, inventor Belgia Ernest Solvay (1838-1922) mengusulkan proses Solvay (proses soda-amonia), yang lebih maju dari aspek kimia dan teknologi. Telah diketahui sejak awal abad 19 bahwa soda dapat dihasilkan dari garam denagn amonium karbonat (NH4)2CO3. Solvay yang berpengalaman dengan mesin dan dapat mendesain proses produksi tidak hanya dari sudut pandang kimia tetapi juga dari sudut pandang teknologi kimia. Dia berhasil mengindustrialisasikan prosesnya di tahun 1863.
Keuntungan terbesar proses Solvay adalah penggunaan reaktor tanur bukannya reaktor tangki. Air garam yang melarutkan amonia dituangkan dari puncak tanur dan karbondioksida ditiupkan keda lam tanur dari dasar sehingga produknya akan secara kontinyu diambil tanpa harus menghentikan reaksi. Sistem Solvay menurunkan ongkos secara signifikan, dan akibatnya menggantikan proses Leblanc.

Reaksi utama
NaCl + NH3 + CO2 + H2O –> NaHCO3 + NH4Cl(11.4)
2NaHCO3 –> Na2CO3 + CO2 + H2O(11.5)
Sirkulasi amonia  
2NH4Cl + CaO –> 2NH3 + CaCl2 + H2O(11.6)
Pembentukan karbon dioksida CO2 dan kalsium oksida CaO  
CaCO3 –> CaO+CO2 (11.7)
Satu-satunya produk samping proses Solvay adalah kalsium khlorida, dan amonia dan karbondioksida disirkulasi dan digunakan ulang. Dalam produksi soda dari garam, poin penting adalah pembuangan khlorin. Dalam proses Leblanc, khlorin dibuang sebagai gas asam khlorida, namun di proses Solvay, khlorin dibuang sebagai padatan tak berbahaya, kalsium khlorida. Karena keefektifan dan keefisienan prosesnya, proses Solvay dianggap sebagai contoh proses industri kimia.

b. Asam sulfat

Sejak akhir pertengahan abad 16, kimiawan Jerman Andreas Libavius (1540?-1616) memaparkan proses untuk mendapatkan asam sulfat H2SO4 dengan membakar belerang dalam udara basah.
S + O2 –> SO2 (11.8)
2SO2+O2 –> 2SO3 (11.9)
Glauber, insinyur kimia pertama, menemukan di pertengahan abad 17 proses untuk mendapatkan asam khlorida dengan memanaskan garam dan asam sulfat. Asam khlorida yang didapatkannya memiliki konsentrasi yang lebih tinggo daripada yang didapatkan dalam proses sebelumnya.
2NaCl+H2SO4 –> Na2SO4+2HCl (11.10)
Reaksi yang dibahas di buku teks sekolah menengah itu digunakan di sini. Glauber mengiklankan natrium sulfat sebagai obat dengan efek yang menakjubkan dan mendapatkan banyak keuntungan dari penjualan garam ini.
Proses yang lebi praktis untuk menghasilkan asam sulfat dikenalkan yakni dengan cara memanaskan belerang dengan kalium nitrat KNO3. Awalnya pembakaran dilakukan di wadah gelas besar yang mengandung air.
Asam sulfat yang terbentuk terlarut dalam air. Walaupun proses kedua (SO2 –>SO3) lambat dan endotermik, dalam proses ini oksida nitrogen nampaknya berfungsi sebagai katalis yang mempromosikan reaksi ini.
Dengan meningkatnya kebutuhan asam sulfat khususnya dengan berkembangnya proses Leblanc yang membutuhkan asam sulfat dalam kuantitas besar, alat baru, proses kamar timbal yang menggunakan ruangan yang dilapisi timbal sebagai ganti wadah gelas dikenalkan yang membuat produksi skala besar dimungkinkan. Produksi asam sulfat skala besar otomatis berarti pembuangan nitrogen oksida yang besar juga. Sedemikian besar sehingga pada waktu itupun bahaya ke lingkungannya tidak dapat diabaikan.
Berbagai perbaikan proses dilakukan dengan menggunakan tanur Gay-Lussac dan Glover. Yang terakhir ini digunakan dengan luas karena nitrogen oksida dapat digunakan ulang dan rendemen n itratnya lebih besar.
Ide penggunaan katalis dalam produksi asam sulfat, atau secara khusus dalam oksidasi belearng dioksida telah dikenali sejak kira-kira tahun 1830. Katalis platina terbuki efektif tetapi sangat mahal sehingga tidak digunakan secara meluas. Seteleah setengah abad kemudian, ketika kebutuhan asam sulfat meningkat banyak, ide penggunaan katalis muncul kembali. Setelah masalah keracunan katalis diselesaikan, proses penggunaan katalis platina, yakni proses kontak, menjadi proses utama dalam produksi asam sulfat. Proses kontak masih digunakan sampai sekarang walaupun katalisnya bukan platina, tetapi campuran termasuk vanadium oksida V2O5.

c. Amonia dan asam nitrat

Nitrat (garam dari asam nitrat) sejak zaman dulu dibutuhkan banyak sebagai bahan baku serbuk mesiu. Namun, persediaannya terbatas, dan kalium nitrat yang ada secara alami adalah bahan baku utama yang tersedia. Di abad 19 ketika skala perang menjadi besar, kebutuhan nitrat menjadi membesar, dan kalium nitrat yang ada secara alami tidak dapat memenuhi permintaan.
Selain itu, nitrat diperlukan sebagai bahan baku pupuk buatan. Di akhir pertengahan abad 19 kimiawan Jerman Justus von Liebig (1803-1873) membuktikan kefektifan dan pentingnya pupuk buatan. Masalah yang menghalangi pemakaian bear-besaran pupuk buatan adalah harganya yang tinggi, khususnya pupuk nitrogen.
Di akhir abad 19, fisikawan Inggris William Crookes (1832-1919) meramalkan peningkatan jumlah makanan yang diproduksi tidak dapat mengejar peningkatan populasi dunia dan dunia akan berakhir menjadi katastropi.
Situasi semacam memicu ilmuwan untuk menyelidiki fiksasi nitrogen artifisial atau menemukan proses untuk mengubah nitrogen yang tidak terbatas persediaanya di udara menjadi senyawa yang dapat digunakan. Jelas diperlukan cara untuk melakukan fiksasi dalam skala besar. Jadi, percobaannya harus dimulai di skala laboratorium untuk dapat diperbesar ke skala pabrik.
Fiksasi nitrogen berhasil dilakukan oleh kimiawan Jerman Fritz Haber (1868-1934) dan insinyur kimia Jerman, yang bekerja untuk BASF, Carl Bosch (1874-1940)??ersamaan reaksi untuk
proses Haber-Bosch sangat sederhana, tetapi secara teknis terdapat berbagai kesukaran. Prosesnya dielaborasi sehingga reaksi eksoterm ini akan berlangsung ke sisi kanan dengan mulus.
N2 + 3H2 –> 2NH3 + 22,1 kkal (11.11)
Dalam praktek, beberapa modifikasi dibuat. Misalnya, rasio molar nitrogen : hidrogen bukan 1:3, tetapi 1:3.3. Kondisi reaksi yang dipilih adalah 300°C pada 500 atm. Hidrogen digunakan berlebih pada tekanan tinggi sehingga kesetimbangannya bergeser ke kanan. Karena reaksinya eksoterm, reaksi ini lebih baik dilakukan pada temperatur yang lebih rendah sesuai dengan azas Le Chatelier. Di pihak lain, laju reaksi akan terlalu rendah pada temperatur rendah. Jadi suhunya dibuat agak tinggi ( yakni, dengan tetap mempertimbangkan agar dekomposisi NH3 tidak terjadi). Katalis yang dibuat dari besi digunakan dengan ekstensif.
Proses Haber-Bosch menjadi terkenal sebagai contoh pertama teori kesetimbangan diaplikasikan dalam produksi. Di satu sisi fiksasi nitrogen dengan proses Haber-Bosch membawa banyak manfaat karena kemudahan mendapat pupuk. Di sisi lain amonia berarti bahan baku mesiu dapayt diperoleh dengan mudah pula.
Proses modern untuk menghasilkan asam nitrat HNO3 adalah okidasi amonia di udara. Dalam proses ini, amonia dicampur dengan udara berlebih, dan campurannya dipanaskan sampai temperatur tinggi dengan katalis platina. Amonia akan diubah menjadi nitrogen oksida NO, yang kemudian dioksidasi lebih lanjut di udara menjadi nitrogen dioksida NO2. Nitrogen dioksida direaksikan dengan air menghasilkan asam nitrat. Metoda ini dikembangkan oleh Ostwald, kimiawan yang banyak memberikan kimia katalis, dan disebut proses Ostwald.
Proses ini diungkapkan dalam persamaan reaksi berikut.

4NH3 + 5 O2 –> 4NO + 6 H2O (11.12)
2NO+O2 –> 2NO2 (11.13)
3NO2+H2O –> 2HNO3+NO (11.14)

Entri Populer

twitter


ShoutMix chat widget

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More